

CONSULTING

HAZELTON HOMES LTD

LAND ADJACENT CEDAR DRIVE BOURNE LINCOLNSHIRE PE10 9SQ

FLOOD RISK ASSESSMENT

DECEMBER 2021

FW2038_FRA_001 V2

REVISION HISTORY

Revision	Reason for Issue	Author	Checker	Approved	Date
v1	First Issue	DM	OP	JD	02.08.2021
v2	Drainage strategy revised to suit updated development layout	DM	OP	JD	09.12.2021

EXECUTIVE SUMMARY

- 1. The site is at **NO** quantifiable risk of flooding from tidal events.
- 2. The property is identified within the Environment Agency Flood Risk mapping as being at **Low** risk of flooding from Rivers and Seas.
- 3. The site is identified by the Environment Agency as having a **Low-Medium** chance of flooding from overland Surface Water.
- 4. The site is at a **Low** quantifiable risk of flooding from groundwater sources.
- 5. The site is identified by the Environment Agency as being at **NO** quantifiable risk of flooding from manmade lakes within the topographical catchment of the site.
- 6. The site is at a negligible risk of flooding from the existing sewerage network in the vicinity of the site.
- 7. The site is at a negligible risk of flooding from its own private drainage connections, however this can be mitigated by regular maintenance to ensure the ongoing performance of the system.
- We therefore conclude that the proposed residential units are above the modelled flood level of the local watercourses and sits within Flood Zone 1 as defined in the National Planning Policy Framework February 2019 Table 1.

1.0	INTRODUCTION	1
2.0	SITE DETAILS	3
2.1	SITE LOCATION	3
2.2	SITE DESCRIPTION	3
2.3	TOPOGRAPHY	3
2.4	HYDROLOGICAL CONTEXT	3
2.5	GEOLOGICAL CONTEXT	4
2.6	GROUNDWATER VULNERABILITY	4
2.7	EXISTING DRAINAGE	4
2.8	ARTIFICIAL WATER BODIES	5
3.0	ASSESSMENT OF FLOOD RISK	6
3.1	FLUVIAL	6
3.2	TIDAL OR COASTAL	7
3.3	GROUNDWATER FLOODING	8
3.4	ARTIFICIAL WATER BODIES FLOODING	8
3.5	SURFACE WATER FLOODING	9
3.6	EXISTING SEWER FLOODING	. 10
4.0	PROPOSED DEVELOPMENT	. 11
4.1	DEVELOPMENT PROPOSALS	. 11
5.0	SURFACE WATER MANAGEMENT	. 12
5.1	FLOOD RISK FROM THE DEVELOPMENT	. 12
5.2	EXISTING SURFACE WATER DISCHARGE	. 12
5.3	CLIMATE CHANGE	. 12
5.4	PROPOSED SURFACE WATER DRAINAGE STRATEGY	. 12
5.5	PROPOSED SURFACE WATER DISCHARGE	. 14
5.6	CONSIDERATION OF SUDS	. 14
5.7	ATTENUATION PROPOSALS	. 16
5.8	MAINTENANCE	. 16
5.9	EXCEEDANCE FLOWS	. 16
5.10	DRAINAGE SUMMARY	. 17
6.0	FOUL WATER DRAINAGE STRATEGY	. 18
6.1	FOUL WATER DRAINAGE DESIGN	. 18
7.0	FLOOD MITIGATION STRATEGY	. 19
7.1	PRINCIPLES FOR MITIGATION STRATEGY	. 19
7.2	SEQUENTIAL APPROACH	. 19

7.3	FINISHED FLOOR LEVELS	
7.4	SAFE ACCESS	
7.5	FLOOD WARNING & EVACUATION	
8.0	SEQUENTIAL AND EXCEPTION TESTS	
8.1	SEQUENTIAL TEST	
8.2	EXCEPTION TEST	
9.0	CONCLUSIONS & RECOMMENDATIONS	23
9.1	CONCLUSIONS	
9.2	RECOMMENDATIONS	

Farrow Walsh Consulting Ltd Cedar Drive, Bourne, Lincolnshire Flood Risk Assessment December 2021 FW2038_FRA_001 v2

APPENDICES

- Appendix A Site Location Plan
- Appendix B Development Proposals
- Appendix C Topographical Survey
- Appendix D BGS Borehole Records
- Appendix E Anglian Water Sewer Records
- Appendix F Lincolnshire Highway Drainage Record
- Appendix G EA Flood Mapping for Planning [July 2021]
- Appendix H Lincolnshire Groundwater Flood Risk
- Appendix I Lincolnshire Flood Risk Mapping
- Appendix J Greenfield FEH Runoff Calculations
- Appendix K Greenfield Flow Routes Analysis
- Appendix L Drainage Strategy
- Appendix M Hydraulic Calculations
- Appendix N Drainage Maintenance Schedule

TABLES

Table 1 - SuDS Consideration Table	15
	10
Table 2 - Extract from NPPG 2019 (Table 3)	19

FIGURES

Figure 1 - Extract from EA Flood Map for Planning (December 2021)	7
Figure 2 - Extract from EA Mapping Risk of Surface Water Flooding (December 2021)	. 10

1.0 INTRODUCTION

- 1.1.1 Farrow Walsh Consulting has been engaged by the applicant Hazelton Homes Ltd to produce a Flood Risk Assessment to accompany the planning application for a proposed residential development to be situated on Cedar Drive, Bourne, Lincolnshire.
- 1.1.2 The development proposals include for the construction of 45 new detached, semi-detached and terrace residential dwellings. A site location plan is included within Appendix A and the development proposals can be found within Appendix B.
- 1.1.3 This report considers the flood risk associated with a development proposal of this type and considers mitigation measures to ensure user safety.
- 1.1.4 The Flood Risk Assessment (FRA) report has been informed by the guidance contained within The National Planning Framework (February 2019, Department for Communities and Local Government) (NPPF).
- 1.1.5 Reference has been made to basic flood maps contained within the Environment Agency websites and the Environment Agency Standing Advice for Local Planning Authorities.
- 1.1.6 In consulting the Environment Agency website this report examines the following:
 - Assessment of Flood risk and the likely sources of flooding
 - Managing Residual Flood Risk
 - Managing surface water
 - Remedial Measures
- 1.1.7 This FRA examines the flood implications of the proposed development based on the following objectives, set out within the NPPF.
 - Appraising risk
 - Managing risk
 - Reducing risk
 - A partnership approach

- 1.1.8 This report has been prepared using the following policy and guidance documentation:
 - National Planning Policy Guidance (NPPG)
 - Ciria C753 The SUDs Manual
 - Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities (EA February 2016)
 - Joint Lincolnshire Flood Risk and Drainage Management Strategy 2012-2025
 - Non-Statutory Technical Standards 2015
 - Written Ministerial Statement regarding Sustainable Drainage (HCWS161) 2014
 - The Water Framework Directive (2000)
 - Building Regulations Part H 2015
- 1.1.9 In consulting with key stakeholders and policies this report aims to assess the risk of flooding both to the site and the impact of any development on the downstream network.
- 1.1.10 The flood management strategy, including consideration of safe access / egress to and from the site and flood resilience measures, is based on relevant British Standards (BS8533), the standing advice provided by the Environment Agency and on best engineering judgement. The approach for the FRA is based on the requirements of the Environment Agency and Lincolnshire County Council.
- 1.1.11 Any comments and opinions expressed in this report, including any conclusions are based on the information available to Farrow Walsh Consulting Ltd at the time of writing. The conclusions therefore could differ if the information is found to be inaccurate, incomplete or misleading. Farrow Walsh Consulting Ltd. accepts no liability should this be proven to be the case, or, if additional information is made available with respect to this site.

2.0 SITE DETAILS

2.1 SITE LOCATION

- 2.1.1 The proposed development site is located to the north-eastern boundary of the market town of Bourne, Lincolnshire.
- 2.1.2 The site location is bounded by the adopted highway Cedar Drive to the south-east and residential properties to the south-eastern, eastern and norther eastern boundaries. The western, north-western, and south-western boundaries comprise of open agricultural fields and woodland.
- 2.1.3 A site location plan can be found within Appendix A.

2.2 SITE DESCRIPTION

- 2.2.1 The application site is irregular in shape and covers an area of 31,647m² or 3.165 Hectares.
- 2.2.2 The site is currently classified as greenfield land.
- 2.2.3 Access to the site is directly from the adopted highway Cedar Drive to the south-eastern boundary.

2.3 TOPOGRAPHY

- 2.3.1 The ground levels within the site boundary are recorded to OS datum as between 20.79 to 16.20mAOD and the site generally slopes in a west to east direction.
- 2.3.2 A copy of the topographical survey can be located within Appendix C.

2.4 HYDROLOGICAL CONTEXT

- 2.4.1 Online OS mapping indicates that there are drains and watercourses located to both the northern and southern boundaries of the site.
- 2.4.2 The northern watercourse to the site is unnamed and extends a further 280m to the east before entering a culvert beneath Hazelwood Drive. Its outfall, via open ditches and culverts, is deemed to be the Car Dyke Drain situated 1.5km to the east.
- 2.4.3 The drain to the southern boundary is unnamed and enters a culvert at the southern point of the site. Its eventual outfall point is unknown.
- 2.4.4 The site lies within the operation catchment of the Glens and the management catchment of the Welland.
- 2.4.5 The site lies within the upper reaches of the River Glen operational catchment area.

2.5 GEOLOGICAL CONTEXT

- 2.5.1 The British Geological Society (BGS) online mapping indicates that the site geology comprises of no superficial deposits across the entire development area.
- 2.5.2 The bedrock is identified by the British Geological Society as comprising the Kellaways Sand Member Sandstone and Siltstone (interbedded), and Kellaways Clay Member Mudstone.
- 2.5.3 The BGS online borehole records indicate 2no. boreholes, undertaken in April 1973, within the field of the site development. The records for boreholes TF02DE35 and TF02SE36 are in Appendix D.
- 2.5.4 Both borehole records extend to a depth of 3.0m and indicate firm to stiff clay with no groundwater encountered in either borehole to a reduced level of 15.87m.
- 2.5.5 The groundwater is deemed to follow the general topography and flow in a south-eastern direction towards the River Bourne Eau to the south of Bourne town centre.

2.6 GROUNDWATER VULNERABILITY

- 2.6.1 The bedrock stratum below the site is not classified by the Environment Agency as an aquifer.
- 2.6.2 In terms of vulnerability, the ground is classified as a combination of High and Unproductive.
- 2.6.3 The site does not lie within a Source Protection Zone.

2.7 EXISTING DRAINAGE

- 2.7.1 Anglian Water are responsible for maintaining the public sewers within the area of Bourne and the sewer records have been obtained and can be found within Appendix E.
- 2.7.2 The sewer records confirm an existing 150mm diameter vitrified clay foul sewer, and 300mm diameter vitrified clay storm sewer, running west to east within Cedar Drive.
- 2.7.3 The existing highway Cedar Drive is drained via road gullies along its length and the Lincolnshire County Council highway drain record is shown in Appendix F.
- 2.7.4 The site is an open grass field with no evidence of land drains beneath.
- 2.7.5 There are existing drains and watercourse to the fields western, southern, and northern boundaries.
- 2.7.6 An existing surface water ditch runs within a line of trees towards the eastern extent of the field and outfalls into the northern watercourse.

2.7.7 There exists a water source marked as Blind Well (Chalybeate) on OS mapping to the north-west of the proposed development area. The feature is described as a locally shallow damp grassy depression with no prominent issue outfall.

2.8 ARTIFICIAL WATER BODIES

2.8.1 There are no reservoirs or canals located within 10km of the site.

3.0 ASSESSMENT OF FLOOD RISK

3.1 FLUVIAL

- 3.1.1 The site lies in the River Bourne Eau catchment classified as a main river and falls under the administrative jurisdiction of the Environment Agency.
- 3.1.2 The Environment Agency have derived flood maps of England from which it is possible to initially identify whether a site is located within an area that is at risk of fluvial flooding. The maps, which are available on the Environment Agency's website, categorise land as being within Flood Zone 1, Flood Zone 2 or Flood Zone 3, with Flood Zone 1 being all land falling outside of the flood plain and Flood Zones 2 and 3 being all land within the floodplain. Flood Zone 3 is split into two further categories, namely Flood Zone 3a and Flood Zone 3b with Flood Zone 3b considered to be the functional floodplain.
- 3.1.3 The definitions of the Flood Zones extracted from the National Planning Policy Framework (NPPF) are described below:
 - Flood Zone 1 low probability. This zone comprises land assessed as having a less than 1 in 1000 annual probability of river or sea flooding (<0.1%).
 - Flood Zone 2 medium probability. This zone comprises land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (15 0.1%) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5% 0.1%) in any year.
 - Flood Zone 3a high probability. This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.
 - Flood Zone 3b the functional floodplain. This zone comprises land where water has to flow or be stored in times of flood. Typically, land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood.
- 3.1.4 The extent of flooding on main rivers is indicated on the Environment Agency website and an extract from the indicative flood maps can be seen in Figure 1. The areas of dark blue identify flooding probability of 1 percent (1 in 100 year) and the light blue areas are areas of extreme flood between the 1 percent and 0.1 percent (1 in 1000 year) probability.

Figure 1 - Extract from EA Flood Map for Planning (December 2021)

- 3.1.5 The site is identified on the EA planning flood mapping that the site lies wholly within Flood Zone 1 (annual probability of flooding over 1 in 1000 years). The EA flood mapping confirmation is found in Appendix G.
- 3.1.6 Based on Table 1 of the NPPF the site has a Low probability of flooding due to main rivers.
- 3.1.7 The North Kesteven District Council and South Kesteven District Council flood investigation report, dated February 2020, does not have any record of flooding events in the vicinity of the site due to fluvial sources.

3.2 TIDAL OR COASTAL

- 3.2.1 The site has an elevational range of 20.79 to 16.20mAOD metres above sea level, as shown within the topographical survey within Appendix C.
- 3.2.2 The site is geographically remote from any coastline. The site lies within the Welland river basin and the catchment of the River Bourne Eau, classified by the Environment Agency as a main river, a tributary of the River Glen.
- 3.2.3 The site is indicated by mapping as being remote from the areas at risk of tidal flooding with the existing coastal defences intact or removed.
- 3.2.4 The site is therefore considered comprehensively free from risk from tidal or coastal flooding effects, being horizontally and vertically remote from such influences at present, and after consideration of climate change effects.

3.3 GROUNDWATER FLOODING

- 3.3.1 Groundwater flooding occurs as a result of rising water from underlying aquifers or from water flowing from abnormal springs. This tends to occur after long periods of sustained high rainfall, and the areas at most risk are often low-lying where the water table is more likely to be at a shallow depth. Groundwater flooding is known to occur in areas underlain by major aquifers, although it is increasingly being associated with localised floodplain sand and gravels.
- 3.3.2 The Joint Lincolnshire Flood Risk and Drainage Management Strategy classifies the site as low risk of groundwater flooding (<25%). The Joint Lincolnshire Flood Risk and Drainage Management Strategy mapping extract in shown in Appendix H.

3.4 ARTIFICIAL WATER BODIES FLOODING

- 3.4.1 There are no reservoirs or manmade lakes within the vicinity of the site.
- 3.4.2 The EA online mapping indicates that there are no areas within the vicinity of the site at risk of flooding from reservoirs.
- 3.4.3 The failure of the water mains running within Cedar Drive, to the south-east of the site, is considered statistically remote.
- 3.4.4 We conclude that the risk of failure of the water main is remote. It must however be noted that for a failure adjacent to the site the nature of the escape and probable pressurized column of water could itself cause some local flood damage, but this is beyond practical mitigation.
- 3.4.5 The North Kesteven District Council and South Kesteven District Council flood investigation report, dated February 2020, does not have any record of flooding events in the vicinity of the site due to artificial sources.

3.5 SURFACE WATER FLOODING

- 3.5.1 Surface water flooding occurs when natural and engineered systems drainage network capacity is exceeded and thus cannot accommodate the volume of rainfall / runoff. Surface water flooding occurs often in urban areas during extreme, high intensity, low duration rainfall events which overwhelm the local surface water drainage systems. In rural areas this type of flooding can occur during medium intensity, long duration events where saturated ground conditions prevent natural infiltration into the subsoils below the surface. Flood water arising from such events is then conveyed above ground following the topography of the surrounding land.
- 3.5.2 The site is located within the upper reaches of the overall catchment the River Bourne Eau, as on the Environment Agency catchment website. The local catchment tends North-West to South-East towards to the River Bourne Eau.
- 3.5.3 The Environment Agency have modelled locations along critical flow paths and area situated in topographic depressions, which could flood following an extreme rainfall event when drainage capacity has been exceeded. Figure 2 indicates the predicted surface water flood risk map taken from the Environment Agency's website.
- 3.5.4 The Joint Lincolnshire Flood Risk and Drainage Management Strategy does not show any areas in the vicinity of the site to be at risk of local flooding. The mapping can be found within Appendix I.
- 3.5.5 The majority of site is considered to be at very low to low risk from overland flows by the EA, with an area along the northern boundary watercourse, noted to be medium to high risk. Interrogating the topographical survey and flood mapping further would suggest that the rear residential gardens to the south-eastern boundary of the site are at low risk of flooding. It is noted that the existing drain present to the south of the site does not collect, or intercept, the surface water flows towards the residential properties.

Figure 2 - Extract from EA Mapping Risk of Surface Water Flooding (December 2021)

3.6 EXISTING SEWER FLOODING

- 3.6.1 The sewer network surrounding the development is owned and maintained by Anglian Water. A copy of the sewer records for the area can be found within Appendix E.
- 3.6.2 These records indicate a 150mm diameter vitrified clay sewer foul surface water and 300mm diameter vitrified clay storm sewers running outside the south-eastern boundary of the site within Cedar Drive.
- 3.6.3 Generally, due to the site levels and those of the surrounding areas it is considered that any breach of the sewers would follow the natural topography and flow East along Cedar Drive and away from the site.
- 3.6.4 The site is also not recorded as a critical drainage area by South Kesteven District Council.
- 3.6.5 The North Kesteven District Council and South Kesteven District Council flood investigation report, dated February 2020, records a single residential flood incident occurring in June 2016 in Beech Avenue. The incident is 400m remote from the development site and was due to 'Inadequate drainage system capacity'. Due to the age, nature, and distance of this localised flooding event it is deemed to have no influence on the development drainage proposals.
- 3.6.6 It should be noted that the sewerage systems are design to accommodate the 1 in 30 year storm events and thus for storm events above this probability may cause flooding from sewers to occur.

4.0 PROPOSED DEVELOPMENT

4.1 DEVELOPMENT PROPOSALS

- 4.1.1 The development proposal include for construction of 45 new detached, semi-detached and terrace residential dwellings. A site location plan is included within Appendix A and the development proposals can be found within Appendix B.
- 4.1.2 Since the site is located within flood zone 1 and potential flood water will not reach the site, the finished floor levels for each block will be set at a minimum of 300mm above the existing recorded topographical survey levels.
- 4.1.3 All plots shall be a minimum 150mm above the final ground levels to ensure that overland flows do not enter the properties.
- 4.1.4 The current use of the application site is classed as greenfield use, with no existing private drainage network evident.
- 4.1.5 In accordance with Table 3 of NPPG (2019), a residential land use has a flood vulnerability classification of 'more vulnerable'.

5.0 SURFACE WATER MANAGEMENT

5.1 FLOOD RISK FROM THE DEVELOPMENT

- 5.1.1 In accordance with NPPG site specific flood risk assessments should consider and assess how runoff from the development will be managed and whether it will increase flood risk elsewhere.
- 5.1.2 The primary flood risk generated by the new development is likely to be the risk posed by overland surface water flooding due to exceedance of the existing drainage network.

5.2 EXISTING SURFACE WATER DISCHARGE

- 5.2.1 There is no evidence of existing private drainage on the site.
- 5.2.2 The existing site is classified as greenfield.
- 5.2.3 Existing greenfield runoff rates have been calculated, using the FEH Statistical Method, for the permeable area of 1.805ha and can be found within Appendix J. They are also summarised below.
 - Q_{,BAR} = 4.67 l/s
 - Q_{30,GR} = 11.45 l/s
 - $Q_{100,GR}$ = 16.63 l/s

5.3 CLIMATE CHANGE

- 5.3.1 National Planning Policy Guidance requires that climate change be incorporated within the surface water drainage design in accordance with The Environment Agency's 'Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities' February 2016 when assessing flood risk for a development.
- 5.3.2 The design life of the development is beyond 2070, therefore in accordance with the Environment Agency guidance the development should make allowances for an increase in extreme rainfall intensity of an additional 40% when compared to the 1961-1990 baseline.

5.4 PROPOSED SURFACE WATER DRAINAGE STRATEGY

5.4.1 Surface Water runoff from the proposed development should mimic, as far as possible, the surface flows from an undeveloped greenfield site.

- 5.4.2 Building Regulations 2010 Part H guidance for disposal of surface water is as follows:
 - A soakaway or infiltration system, or where not reasonably practical;
 - A surface water ditch or watercourse, or where not reasonably practical;
 - A below ground sewer.
- 5.4.3 The British Geological Society (BGS) online mapping indicates that the site geology comprises of no superficial deposits across the entire development area.
- 5.4.4 The bedrock is identified by the British Geological Society as comprising the Kellaways Sand Member Sandstone and Siltstone (interbedded), and Kellaways Clay Member Mudstone.
- 5.4.5 The BGS online borehole records indicate 2no. boreholes, undertaken in April 1973, within the field of the site development. The records for boreholes TF02DE35 and TF02SE36 are in Appendix D. Both borehole records extend to a depth of 3.0m and indicate firm to stiff clay, with no groundwater encountered in either borehole to a reduced level of 15.87m.
- 5.4.6 On the basis of the above points, for the purposes of this report, it is assumed that infiltration will not be feasible for the disposal of surface water from the site.
- 5.4.7 The nearest appropriate watercourse to the site is an unnamed watercourse, which runs alongside the northern boundary of the site. This unnamed watercourse is a tributary of the River Bourne Eau, via the Car Dyke Drain situated 1.5km to the east. The existing drain to the southern boundary of the site, which is deemed to enter a culvert at the rear garden of No. 17 Cedar Drive, is deemed as inappropriate due to its higher elevation relative to the site and the unknown capacity of the culvert. The topographical survey does not record a water level for the primary watercourse, whilst the surface water flooding mapping suggests that in storm events the location of this watercourse is at medium to high risk of flooding. Therefore, a connection to this primary watercourse would be preferable, as the drainage system and connection to this watercourse would mimic the existing greenfield flow routes as shown in Appendix K.
- 5.4.8 The Anglian Water mapping indicates that there are surface water sewers located within Cedar Drive to the south-east of the site.
- 5.4.9 Therefore, due to the availability of a suitable watercourse, surface water disposal by the means of treatment and detention prior to controlled release into the watercourse is deemed the most appropriate solution.

- 5.4.10 The development area is 1.911 hectares, and it is proposed that 51% of the development will be impermeable and require collecting and attenuating prior to discharge. For the purposes of this report the impermeable area of the proposed site has been taken as 0.978 hectares based on the current site layout available.
- 5.4.11 It is currently proposed that the drains within the site will remain will be a mixed of private, Highway Authority and Water Authority ownership.
- 5.4.12 It is proposed that the surface water from the development will be controlled using a flow control prior to discharge into the existing watercourse to the north-eastern site boundary.
- 5.4.13 A copy of the Drainage Strategy can be found within Appendix L.

5.5 PROPOSED SURFACE WATER DISCHARGE

- 5.5.1 Surface water drainage will be provided in a new below ground gravity drains constructed around the properties and in the shared driveway mirroring the existing runoff arrangement with surplus flows being attenuated using both the voided stone sub-base below the permeable paving and the vegetated attenuation pond. The proposed surface water runoff rate for the development area is:
 - Q100+40%cc = 4.6 l/s to the northern watercourse (up to a 24-hour storm event)
- 5.5.2 This rate is subject to approval from the LLFA.
- 5.5.3 By controlling the discharge rate from the site for a 1in100 year + 40% storm event to 4.6 l/s the site is offering a betterment to the downstream network by utilising on site flood storage at an earlier stage in the overall river catchment potentially reducing flooding downstream.
- 5.5.4 All sewers and drainage are to be constructed in accordance with all relevant industry standards, including but not limited to:
 - Building Regulations Approved Document Part H 2010
 - Sector Guidance in relation to the adoption of sewerage assets by sewerage companies in England
 - LASOO Guidance for Urban Creep
- 5.5.5 The drawings & schedules of the as-built site drainage system are to be made available to the building occupier to enable drainage maintenance and future works to be undertaken.

5.6 CONSIDERATION OF SUDS

5.6.1 With reference to CIRIA 753 and the surface water treatment process, the provision of permeable block paving in conjunction with the voided stone will aid in the removal of sediment, hydrocarbons and heavy

metals. All runoff from roofs and hardstand will be drained via voided stone and catch pits prior to connection into the new adoptable sewer network.

- 5.6.2 Both the Environment Agency and Lincolnshire County Council require Sustainable Drainage (SuDS) techniques to be incorporated within new developments where possible.
- 5.6.3 Consideration should therefore be given to the use of the Sustainable Urban Drainage Systems. Table 1 below gives commentary in relation to the suitability of SuDS techniques for the proposed development.

SUDS Technique	Commentary	Suitability
Green Roof	Due to the small roof sizes and pitched nature of roofs within the development, the option of incorporating green roofs into the development is not suitable for this site.	No
Infiltration by Soakaway	Historic borehole logs have been provided which show a minimum 3.0m depth of firm to stiff Clay beneath the site, therefore it is assumed that soakaways are not a suitable method for disposal of runoff.	No
Water Butt	Storage of roof runoff via the use of water butts has the potential to be utilised.	Potential
Filter Strip	There is potential, to mitigate existing surface flows into residential gardens.	Potential
Infiltration Trench/Filter Trench	The site geology is deemed not suitable for infiltration trenches/filter trenches.	No
Swale	There is potential, to mitigate existing surface flows into residential gardens.	Yes
Bio-retention	There is limited areas for this to be sited, and concerns over maintenance by the owners.	No
Permeable Paving	Permeable paving has been used across the site to provide both treatment of hydrocarbons and storage.	Yes
Geocellular/modular system	Geocellular systems may be required in conjunction with permeable paving with voided stone below for critical locations.	Yes
Infiltration Basin	It cannot be confirmed as to whether this is viable due to no infiltration testing having yet been undertaken	No
Detention Basin	A large open soft landscaped area to the north-east of the site has been deemed suitable for providing a basin/pond.	Yes
Pond	A large open soft landscaped area to the north-east of the site has been deemed suitable for providing a basin/pond.	Yes
Stormwater Wetland	It is not viable or practical to accommodate stormwater wetland on site due to the volume of attenuation required and the available extent of soft landscaping areas.	No

Table 1 - SuDS Consideration Table

5.6.4 The table above identifies that due to site constraints, the most feasible method for providing SuDS is to utilise lined permeable paving stone sub-base and an attenuation pond. Further SuDS can be offered if required by means of including water butts to each dwelling.

5.7 ATTENUATION PROPOSALS

- 5.7.1 In accordance with current design guidelines the attenuation volume for a site should be calculated based on a 1 in 100 year + climate change allowance.
- 5.7.2 It is proposed that roof areas are to be collected and drained through below ground drains and permeable paving prior to being attenuated, within voided stone sub-base and an attenuation pond, before being discharged into the existing watercourse.
- 5.7.3 Preliminary hydraulic modelling of a drainage network has been undertaken, using industry recognised software, to confirm the drainage design suitability and these calculations can be found within Appendix M. The water level within the outfall watercourse is currently unknown, therefore hydraulic modelling with a surcharge outfall has also been considered for a depth of 800mm for all storm events. During a surcharged outfall event exceedance flows are expected within the confines of the site.
- 5.7.4 Any exceedance flows resulting from a surcharged outfall will be managed and directed away from any dwellings.

5.8 MAINTENANCE

- 5.8.1 At this stage it has been assumed that the dwelling owners will maintain the drainage elements as outlined within this report. Future maintenance schedules for the SuDS features have been provided within Appendix N.
- 5.8.2 The drawings and schedules of the as built drainage are to be made available to the building owner to enable drainage maintenance and future works to be undertaken.
- 5.8.3 At this stage, the maintenance company has not yet been appointed and as such the applicant will be responsible until such time as they are appointed. Once appointed the contact details will be provided to the LLFA for their records.

5.9 EXCEEDANCE FLOWS

- 5.9.1 Exceedance flows are to be contained within the within the site and directed away from buildings towards the areas of driveway and landscaping.
- 5.9.2 Exceedance flow routes can be seen on the flow route analysis drawing within Appendix K.

5.10 DRAINAGE SUMMARY

5.10.1 The proposed surface water drainage system can be summarised as follows:

- Surface water runoff from the site will be conveyed by pipes, stored within voided stone base and attenuation pond, then discharged into the existing watercourse at a controlled rate.
- The intention is to utilise permeable paving in conjunction with catch pits and voided stone, with the intention of trapping, filtering, and removing hydrocarbons by biodegradation in line with CIRIA reports C753, C609 & C582 and 'Pollution Prevention Guideline' PPG3 (Environment Agency, 2006) guidance.
- Use of voided stone and an attenuation pond to store runoff volumes in extreme storm events up to the 1 in 100 year +40% climate change storm event.

6.0 FOUL WATER DRAINAGE STRATEGY

6.1 FOUL WATER DRAINAGE DESIGN

- 6.1.1 It is proposed that all foul drainage will be conveyed from the properties by below ground private gravity drains prior to connection into the existing Anglian Water sewers within Cedar Drive.
- 6.1.2 This new foul connection will be subject to S106 approval by Anglian Water.

7.0 FLOOD MITIGATION STRATEGY

7.1 PRINCIPLES FOR MITIGATION STRATEGY

7.1.1 In accordance with Table 3 of NPPG (2019), a residential land use has a flood vulnerability classification of 'more vulnerable'.

	Flood Risk Vulnerability Classification				
Flood Zones	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
Zone 1	✓	✓	✓	\checkmark	✓
Zone 2	~	Exception Test Required	~	\checkmark	~
Zone 3a	Exception Test Required	×	Exception Test Required	\checkmark	~
Zone 3b	Exception Test Required	×	×	×	✓

Table 2 - Extract from NPPG 2019 (Table 3)

- ✓ Denotes Development is appropriate
- × Development should not be permitted
- 7.1.2 The findings of the FRA indicate that the site is located within FZ1. However, the site is down slope of a large are of undeveloped field which is to remain as an environment buffer zone. As such, the following mitigation measures should be introduced to protect the site during its lifetime.
 - Surface water ditches and dry swales to be constructed to the perimeter of the proposed development to direct surface flows away from existing and proposed dwellings into the existing watercourse to mimic the current greenfield flow routes.
- 7.1.3 The drainage design should account for any residual risk of flooding from surface water as a result of exceedance events.

7.2 SEQUENTIAL APPROACH

7.2.1 The site is located within Flood Zone 1, the buildings have been positioned where possible outside of the watercourse surface water risk extents to ensure a sequential approach is taken by trying to position buildings as far away from the source of flooding as practical.

7.3 FINISHED FLOOR LEVELS

7.3.1 Floor levels should be set such that they are a minimum of 300mm above the existing recorded ground levels and should be no less than 150mm above the final surrounding ground levels.

7.4 SAFE ACCESS

- 7.4.1 In accordance with current guidance and DEFRA FD2320 safe access is to be provided for residents in the event of flooding. Where safe access cannot be provided measures are to be implemented to ensure the residents' safety until the emergency services have been able to reach them.
- 7.4.2 The EA online mapping indicates that the site access lies within FZ1 have therefore has a low probability of flooding. This would allow all users to safely access and egress the site up to the 1 in 1000 year storm event probability.

7.5 FLOOD WARNING & EVACUATION

7.5.1 The site is considered to have a very low probability of flooding from all sources and therefore it is deemed no requirement for a flood warning or evacuation plan exists.

8.0 SEQUENTIAL AND EXCEPTION TESTS

8.1 SEQUENTIAL TEST

- 8.1.1 For clarity, the aim of the sequential test is to steer new development to areas with the lowest probability of flooding. Furthermore, approval of the Sequential Test lies with the Local Planning Authority.
- 8.1.2 The NPPF indicates that for a more vulnerable land use within Flood Zones 1, development is appropriate. The site is identified as being within FZ1 as defined by the NPPF, identified on the EA Indicative Flood Map and also within the Wiltshire Council Strategic Flood Risk Assessment.
- 8.1.3 The site is in an existing suburban area with prominent residential, retail and commercial uses within the vicinity of the site.
- 8.1.4 In view of the facts as identified the applicant does not own other sites considered to be more suitable for residential accommodation in the immediate vicinity.
- 8.1.5 The above clearly demonstrates that, although not required for this site, a sequential test would be satisfied provided it can be demonstrated that flood water will not pose excessive risk to the development, safe ingress and egress can be created and the development will not increase risk of flooding elsewhere.
- 8.1.6 The NPPF defines what type of development is appropriate in an individual location and seeks to guide development generally away from areas of flood risk. It nevertheless accepts implicitly That some development in areas of higher potential risk may be appropriate or indeed essential, and seeks to classify zones of risks, types of development and development suitability.

8.2 EXCEPTION TEST

- 8.2.1 Table 3 within the NPPF indicates that the site is appropriate for use as a more vulnerable land use due to the site being within Flood Zones 1.
- 8.2.2 Wider sustainable benefits to the community include:
 - Potential for reduced risk of flooding elsewhere by increasing flood storage volume within the site
 - Reduction in surface water runoff when compared to the existing situation delaying discharge into the sewers and potentially providing a betterment downstream
 - Better use of existing overgrown land within a built-up residential area

8.2.3 The FRA demonstrates safety and flooding sustainability by:

- Maintaining floor levels and introducing flood mitigation measures to limit the effects of flood water on the properties
- Controlling runoff to existing greenfield rates on site to delay the discharge into the adjacent watercourse
- Safe ingress and egress routes for pedestrians being available from the properties to the surrounding highways.
- Mitigation measures provided to offer better protection to the properties along the southern boundary of the site.
- 8.2.4 There will be no increase in the level of surface water runoff over the current land use.
- 8.2.5 In view of the above the exception test is deemed to have passed.

9.0 CONCLUSIONS & RECOMMENDATIONS

9.1 CONCLUSIONS

- 9.1.1 The site proposed for development is free of potential risk of flooding from tidal events.
- 9.1.2 The site is outside the extents of the mapped flood plain of main river systems while being classified as a low risk area.
- 9.1.3 The site is at very low to medium risk of flooding from overland flow routing from surface water.
- 9.1.4 The site is at a low susceptibility of flooding from groundwater sources.
- 9.1.5 The site is at no risk of flooding from manmade lakes.
- 9.1.6 The escape flow route from the strategic water mains has also been considered. In the unlikely event of failure of the mains the flows would not reach the properties.
- 9.1.7 The site is at no risk of flooding from existing sewerage systems for the same reason as the water mains issue.
- 9.1.8 The Joint Lincolnshire Flood Risk and Drainage Management Strategy does not show any areas in the vicinity of the site to be at risk of local flooding.
- 9.1.9 The proposed surface water discharge rate of 4.6 l/s for the 1in100 year + 40% climate change combined with the use of above ground SuDS will treat and delay runoff entering the watercourse.
- 9.1.10 The site is at a negligible risk of flooding from its own private drainage systems; however, this can be mitigated against by regular maintenance and channelling of flows within the development away from the properties.
- 9.1.11 We therefore conclude the application site lies within Flood Zone 1 as defined in the NPPF Table 1 and since the exception test for this has been passed more vulnerable development uses should be permitted.

9.2 RECOMMENDATIONS

- 9.2.1 It is recommended that the existing water level of the watercourse at the outfall is determined.
- 9.2.2 Infiltration testing and ground water monitoring should be undertaken in the location of the proposed attenuation pond to confirm the viability of localised infiltration and the depth of groundwater. In the event infiltration is deemed viable for the attenuation pond, the drainage strategy shall be updated as required.

Farrow Walsh Consulting Ltd Cedar Drive, Bourne, Lincolnshire Flood Risk Assessment December 2021 FW2038_FRA_001 v2

APPENDICES

Farrow Walsh Consulting Ltd Cedar Drive, Bourne, Lincolnshire Flood Risk Assessment December 2021 FW2038_FRA_001 v2

APPENDIX A – SITE LOCATION PLAN

Farrow Walsh Consulting Limited **SITE LOCATION PLAN** FW2038 Land off Cedar Drive, Bourne, PE10 9SQ X 508707 Y 320840

Site Location – Aerial Photograph

Site Location – Road Map

Farrow Walsh Consulting Ltd Cedar Drive, Bourne, Lincolnshire Flood Risk Assessment December 2021 FW2038_FRA_001 v2

APPENDIX B – DEVELOPMENT PROPOSALS

THIS DRAWING IS THE PROPERTY OF RDC LTD AND MUST NOT BE COPIED OR USED BY ANY PERSON WITHOUT THE WRITTEN APPROVAL OF RDC LTD

Project:	Client:	Drawing:
LAND OFF CEDAR DRIVE	HAZLETON HOMES	INDICATIVE
Bourne		
		^{Scale:} 1:500 @ A0

	Drawing No:	Drawn By: MA
WAJIERPLAN	Revision:	Checked By: SC
	Date: Oct 21	Cad Ref:

Rev. No.	Date.	Amendment.	Initial
		· · · · · · · · · · · · · · · · · · ·	

Farrow Walsh Consulting Ltd Cedar Drive, Bourne, Lincolnshire Flood Risk Assessment December 2021 FW2038_FRA_001 v2

APPENDIX C – TOPOGRAPHICAL SURVEY

APPENDIX D – BGS BOREHOLE RECORDS

7F/02 SF/35

0854. 2076.

BOREMOLE LOG

Client.	Keste
8.H N	o

P

TT

1000

ALC: N 10.00 100 2

1

Client Kesteven	County Council
8.H No	6 Britch Geological Survey
Date(s) 27	.4.73

Location Bo	urne By - Pass	
Type of buring	Shell and Auger	
Dia. of boring.	200mm	
	casing not used	

Ground Level 20.70m Scale 1:50 metres

Des	cription of Strata		Reduced	Legend	Thickness	Depth	Type	1 0	opth	NOTES
-				111			D	0.00	- 0.40	
TOPSOIL			20.30	111	0.40	0.40	U	0.40	- 0.80	
Brown and sandy sil	grey extre ty CLAY.	mely		x x	1.10		D B	0.80	- 0.90 - 1.50	
			19.20	<u></u> .		1.50	U	1.50	- 1.90	
Firm brow with trac	n silty CLA es of sand	ΑY	Britisti G		1.00		B	1.90	- 2.20	
			18.20	× × ×		2.50	U	2.50	- 2.90	
Stiff gre silty sha	y blue lam: ly CLAY.	inated	17.70		0.50	3.00	D	2.90	- 3.00	
Borehole	Complete		1.1.1.0			1				
	2		104	1	9.4		1			
						İ.				
						Ē	1.			Groundwat
		8	1							not
										encouncer
					10					
aogical Suivey			Bitlish G	eological Si	3(2)	1				gical Survey
			1	1		6	1	1		
						1				
							1			
			1				1			
										1
			10	1						
										100
				1					~	
			100000							
sondical antilal	5		Binlish G	eaogical Si	192	1	5 8		LEINESTI GEO	odicai grivali
						127	2	1	12	10
1				1	1	11	1	4 -		
PRO ECT	Lincolns	hire R	elief R	loads	Scheme			U B D WS.) Srandero Dodisturi-a Balk Sprace Dicturboa t Victor 6. m	e arrezion Test 3 Omupio 6 Sangta 9 A

Tt"	102	32	1.51
			1.21.

09111	~	
0304		

Client Kesteven County B.H. No 7 Date(s) 27.4.73 Ground Level 18.87m Scale 1:50 metres	Gounci Binsh(i Geological I	La Juney Ty 	peation . ype of bo ia. of bor	Bou: oring	rne By - Pass Shell and Au 200mm casing not us	ger Sine ed
Description of Strata	Reduced Level	Legend	Thickness	Depth	SAN Type	APLES Depth	NOTES
TOPSOIL		///	0.50		D	0.00 - 0.50	
Stiff brown and blue grey	18.37	4 02		0.50	U	0.50 - 0.90	
nottled silty CLAY with occasional sandstone					D	0.90 - 1.00	
fragments.		***	1.50		В	1.00 - 2.00	
nairel Super	16.87	0 × .	luney	2.00	U	2.00 - 2.40	logical Survey
Stiff prodominately blue grey with occasional		* * *			D	2.40 - 2.50	
brown mottling silty SLAY.	1 07	***	1.00	2 00	В	2.50 - 3.00	
Borehole Complete	13.87			3.00			
e de la companya de la							
2							not
Indical Survey		colonical i	uner			(Antich Ge	encountered
			ļ				
× *							
naizat Ormoni	Charles of	n National and				1 Distances	Distant Original
adireconial .	•	ediodicy:	nnis)	5		enuso del	indice onucl

Turmon Consistion and Georechasol Division.

12

-

1

APPENDIX E – ANGLIAN WATER SEWER RECORDS

This plan is provided by Anglian Water pursuant its obligations under the Water Industry Act 1991 sections 198 or 199. It must be used in conjunction with any search results attached. The information on this plan is based on data currently recorded but position must be regarded as approximate. Service pipes, private sewers and drains are generally not shown. Users of this map are strongly advised to commission their own survey of the area shown on the plan before and a cut any user for a cut any user for the cut and the plan before and the plan before and the plan before any strongly advised to commission their own survey of the area shown on the plan before any strongly advised to commission their own survey of the area shown on the plan before any strongly advised to commission their own survey of the area shown on the plan before any strongly advised to commission their own survey of the area shown on the plan before any strongly advised to commission their own survey of the area shown on the plan before	Foul Sewer Surface Sewer	 Outfall*	e	Sewa
accepted by Anglian Water for any error or inaccuracy or omission, including the failure to accurately record, or record at all, the location of any water main, discharge pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed. This plan is produced by Anglian Water Services Limited (c) Crown copyright and database rights 2021 Ordnance Survey 100022432. This map is to be used for the purposes of viewing the location of Anglian Water apparatus.	Final Effluent Rising Main*	 Inlet*	€	Public
personal injury resulting from negligence.	Private Sewer* Decommissioned Sewer*	Manhole*	•	Deco

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
6601	F	20.18	17.94	2.24
6602	F	20.35	18.09	2.26
6701	F	-	-	-
6702	F	-	-	-
6703	F	-	-	-
6704	F	-	-	-
6705	F	-	-	-
6706	F	-	-	-
6707	F	-	-	-
7001	F	51./15 20.76	49.95	1.765
7602	F	20.70	10.07 10.34	1.09
7604	r F	20.05	19.04	1.31
7605	F	19.82	17.84	1.98
7606	F	20.88	18.83	2.05
7701	F	20.71	18.15	2.56
7702	F	-	-	-
7801	F	-	-	-
7802	F	-	-	-
7901	F	-	49.05	-
7902	F	50.9	49.15	1.75
7903	F	51.335	49.66	1.675
7904	F	51.005	49.945	1.06
8001	F	50.315	49.065	1.25
8004	F	-	49.365	-
8005	F	-	-	-
8006	F	-	-	-
8602	F	18.28	15.23	3.05 1.31
8701	r F	10.00	17.27	1.99
8702	F	19.49	16.63	2.86
8703	F	17.51	14.84	2.67
8801	F	17	15.5	1.5
8802	F	-	•	-
8803	F	-	-	-
8804	F	-	-	-
8901	F	49.95	48.76	1.19
8902	F	-	48.895	-
9603	F	16.68	14.53	2.15
9701	F	-	-	-
9702	F	17.1	14.76	2.34
9803	F	-	-	-
9904	F	-	-	-
0051	S 0	20.27	18.95	1.32
6751	ა ი	20.28	10.04	1.44
6752	S	-	-	-
7052	S	- 51 715	- 50 425	- 1 29
7651	S	20.58	18.4	2.18
7652	S	20.8	18.58	2.22
7653	S	20.78	19.34	1.44
7654	S	19.88	17.52	2.36
7655	S	20.79	18.89	1.9
7751	S	20.7	18.52	2.18
7752	S	-	-	-
7851	S	-	-	-
7951	S	51.005	50.28	0.725
7952	S	51.335	50.045	1.29
7953	S	50.9	49.535	1.365
7954	S	-	49.14	-
8053	S	50.665	49.74	0.925
8054 8652	১	00.315	49.47	U.845
0000 8654	ა ვ	10.30	14.70 16.70	3.0 2 12
8751	S	16.96	14.56	2.12
8752	S	19.42	16.94	2.48
8753	S	17.52	14.37	3.15
8851	S	16.95	15.01	1.94
8852	S	-	-	-
8853	S	-	-	-
8854	S	-	-	-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
8855	S	-	-	-
8951	S	50	49.3	0.7
8952	S	49.95	48.45	1.5
9654	S	16.62	13.98	2.64
9751	S	-	-	-
9752	S	17.06	14.16	2.9
9852	S	-	-	-
9952	S	-	-	-
9953	S	-	-	-

1		

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

APPENDIX F – LINCOLNSHIRE HIGHWAY DRAINAGE RECORD

APPENDIX G – EA FLOOD MAPPING FOR PLANNING [JULY 2021]

Flood map for planning

Your reference **FW2038**

Location (easting/northing) **508695/320835**

Created **30 Jul 2021 16:37**

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1 hectare or affected by other sources of flooding or in an area with critical drainage problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence which sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2021 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

APPENDIX H – LINCOLNSHIRE GROUNDWATER FLOOD RISK

APPENDIX I – LINCOLNSHIRE FLOOD RISK MAPPING

D3c: Surface water: preliminary flood risk assessment, South Kesteven – initial areas where potential flood risk requires further investigation

NOTE: Map should be viewed at no larger than 1:50,000 scale

© Crown copyright. All rights reserved. Lincolnshire County Council. 100025370 2011

Legend – Estimated number of properties within a 0.5 km sq at potential risk of local flooding

20 to 29

30 to 39

40 to 49

50 and over

APPENDIX J – GREENFIELD FEH RUNOFF CALCULATIONS

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

_atitude:	52.77415° N
_ongitude:	0.39091° W
Reference:	3377521490
Date:	Jul 26 2021 10:32

Calculated by:	Darren Marriott	
Site name:	FW2038	
Site location:	Bourne	

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

Notes	

1.805

Methodology

Q _{MED} estimation method:	Calculate from BFI and SAAR
BFI and SPR method:	Calculate from dominant HOST
HOST class:	22
BFI / BFIHOST:	0.374
Q _{MED} (I/s):	4.16
Q _{BAR} / Q _{MED} factor:	1.12

Hydrological characteristics

	Default	Edited
SAAR (mm):	575	575
Hydrological region:	5	5
Growth curve factor 1 year:	0.87	0.87
Growth curve factor 30 years:	2.45	2.45
Growth curve factor 100 years:	3.56	3.56
Growth curve factor 200 years:	4.21	4.21

(1) Is Q_{BAR} < 2.0 I/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	4.67	4.67
1 in 1 year (l/s):	4.06	4.06
1 in 30 years (l/s):	11.45	11.45
1 in 100 year (l/s):	16.63	16.63
1 in 200 years (l/s):	19 67	19.67

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX K – GREENFIELD FLOW ROUTES ANALYSIS

- 1. DO NOT SCALE.
- 2. This drawing is to be read in conjunction with all other relevant drawings and details.
- Should there be any conflict between the details indicated on this drawing and those on other drawings the Engineer should be informed PRIOR to construction on site.
- 4. Until technical approval has been obtained from the relevant Authority, it should be understood that all drawings issued are Preliminary and NOT for construction. Should the Contractor commence site work prior to such approval being given it is entirely at their own risk.
- 5. Sketch proposals are for illustrative purposes only and as such are subject to detailed site investigation including ground conditions / contaminants, drainage, design and planning / density negotiations.
- 6. All dimensions are in millimetres unless otherwise stated.
- The Farrow Walsh Consulting Designers Risk Assessments for this project must be reviewed PRIOR to the commencement of any works on site.

NOTES

1. Topographical contours produced from national LiDAR data (2020 1m DTM).

EC DM JD 08.12.21

DM OP JD 30.07.21

Scale: 1:1,000 @ A1

Revision:

A2

Highcross Street, Leicester LE1 4NN

321 Bradford Street, Birmingham B5 6ET

100 0363 www.farrowwalsh.com

FOR APPROVAL

farrow

APPENDIX L – DRAINAGE STRATEGY

SAFETY, HEALTH AND ENVIRONMENTAL HAZARD INFORMATION BOX THE HAZARDS NOTED BELOW ARE IN ADDITION TO THE NORMAL HAZARDS AND RISKS FACED BY A COMPETENT CONTRACTOR WHEN DEALING WITH THE TYPES OF WORKS DETAILED ON THIS DRAWING.
THE HAZARDS NOTED BELOW ARE IN ADDITION TO THE NORMAL HAZARDS AND RISKS FACED BY A COMPETENT CONTRACTOR WHEN DEALING WITH THE TYPES OF WORKS DETAILED ON THIS DRAWING.
NONE RELEVANT TO THIS DRAWING.
MAINTENANCE / CLEANING RISKS
NONE RELEVANT TO THIS DRAWING.
DEMOLITION RISKS
NONE RELEVANT TO THIS DRAWING.

Drainage Strategy Summary Details

Site Area (red boundary)	: 31,647m² / 3.165ha
Development Area	: 19,105m² / 1.911ha
Existing Impermeable Area	: 0m² / 0.000ha
Proposed Impermeable Area	: 9,780m² / 0.978ha
FEH Q _{BAR} for Development Area	: 4.67 l/s

Proposed Surface Water Discharge Rate : 4.6 l/s

Surface Water Network

• Development impermeable areas to be drained into the existing watercourse to mimic the historic Greenfield flow routes. Subject to LLFA approval. • FEH Q_{BAR} discharge rate to be used for all storm events up to the 1 in 100

- year + climate change intensity.
- Climate change allowance of 40% to be applied, utilising Upper End Projection for development Design Life 2070-2115.
- Urban Creep allowance of 10% to be added to impermeable areas, as dwellings per hectare is <25.
- All drainage systems to provide SuDS treatment to Ciria753 Guidance. • Surface runoff from roofs of buildings to be directed into granular sub-base of
- permeable paving (First Treatment). • Private vehicle areas to be drained via permeable block paving with perforated carrier drains, catchpits and orifice flow controls (First Treatment).
- Adoptable roads are proposed to drain via trapped road gullies (First Treatment).
- All surface water run-off is directed through vegetated Attenuation Pond, before controlled discharge into existing watercourse (Second Treatment).

Foul Water Network

 All foul water from private properties is proposed to be directed via gravity
drains and sewers into the Anglian Water Foul sewer in Cedar Drive. Subject
to S106 approval.

Storm Event	FEH Greenfield Runoff Rate	Proposed Max. Discharge Rate			
Q _{BAR}	4.67 l/s	4.6 l/s			
1 in 1 year	4.06 l/s	4.6 l/s			
1 in 30 year	11.45 l/s	4.6 l/s			
1 in 100 year	16.63 l/s	4.6 l/s			
1 in 100+40%CC - 4.6 l/s					
Produced using HR Wallingford FEH Statistical Greenfield Runoff tool July 2021.					

Minimum pipe cover to soffits to be as per The Building Regulations 2010 Part H for thermoplastic pipes:

• 0.6m in pedestrian or landscaped areas

0.9m in vehicle accessible areas Any pipes with cover to soffit less than those stated above are to have a Class Z concrete pipe bed & surround

Internal foul drain pipe minimum gradients:

1:80 from SVP & WC to IC

1:40 from Basin & Sink to IC

Refer to Architect's/M&E drawings for pipe sizes and setting-out information. All drainage to be constructed in accordance with Sewer Sector Guidance

and Building Regulations Part H.

A CCTV and level survey of the as-built drainage is to be undertaken by the Contractor and provided to the Engineer for final approval.

Sewer details shown have been taken from Anglian Water sewer records and are to be confirmed by Contractor prior to commencement of the works.

(6)

(5)

5

<5>

 $\langle 6 \rangle$

This drawing and the building works depicted are the copyright of Farrow Walsh consulting td. and may not be reproduced or amended except by written permission. No liability will be accepted for amendments made by other persons.

discrepancies to be reported to the Engineer. LEGEND

Site Boundary

Existing surface water drain/watercourse

Historic surface water outfall point

Vegetated Attenuation Pond with Low Flow Channel

Surface water ditch/dry swale

Permeable Block Paving with Perforated Carrier Drain Beneath, with Catchpits and orifice flow controls

—-- Foul Drain

■---- Trapped Road Gully

— — 🕻 🛛 Headwall

Anglian Water Sewers

DRAINAGE NOTES

 $\langle 3 \rangle$

 $\langle \! \! 4 \rangle$

<5>

New connection into foul sewer subject to S106 application approval by Anglian Water. Mesh Screening

Mesh screen to be placed over the outlet pipe of last chambers during site construction works and removed immediately prior to the first occupancy of the dwellings served by the sewers.

Sewer Connection Invert levels and location of the sewer to be validated by Contractor prior to commencement of any foul drainage works

Storm discharge from the site are shown in the tables for up to a 1 in 100 year +40% climate change storm event, using a flow control device in last chamber (S19).

Surface Water Ditch / Dry Swale Surface water or dry swale to intercept runoff running

towards proposed development and third-party land. Outfalls directed into adjacent watercourses to mimic existing Greenfield runoff routes. Rain Water Pipes

 $\langle 7 \rangle$

All rain water pipes from roofs of buildings to be drained into the granular sub-base of the adjacent permeable block paving.

Surface Water Outfall

Surface water discharge into the watercourse subject to approval by the LLFA.

A2	Drainage strategy updat development layout.	ed to suit revised	EC	DM	JD	08.12.21
A1	Issued for Approval.		DM	OP	JD	30.07.21
Rev	Description of updates		n /	×°	<u>م </u>	Date
Revi	sion Schedule	Dra	CH8	V bh		
farrow 62 Highcross Street, Leicester LE1 4NN 321 Bradford Street, Birmingham B5 6ET ☎ 0330 100 0363 www.farrowwalsh.com						
	FOR /	APPRO	VA	۹L		

Hazelton Homes Ltd

Land Adjacent Cedar Drive, Bourne, Lincolnshire

Title: Drainage Strategy

 Drawn:
 Checked:
 Approved:
 Date:

 DM
 OP
 JD
 July 2021

(_{Scale:} 1:500 @ A1

Drawing No. FW2038-D-401

A2

Revision:

General Notes

1. DO NOT SCALE. 2. This drawing is to be read in conjunction with all other relevant drawings and details.

- 3. Should there be any conflict between the details indicated on this drawing and those on other drawings the Engineer should be informed PRIOR to construction on site.
- 4. Until technical approval has been obtained from the relevant Authority, it should be understood that all drawings issued are Preliminary and NOT for construction. Should the Contractor commence site work prior to such approval being given it is entirely at their own risk.
- 5. Sketch proposals are for illustrative purposes only and as such are subject to detailed site investigation including ground conditions / contaminants, drainage, design and planning / density negotiations.
- 6. All dimensions are in millimetres unless otherwise stated.
- 7. The Farrow Walsh Consulting Designers Risk Assessments for this project must be reviewed PRIOR to the commencement of any works on site.

1. Information shown is for **PLANNING** purposes only and is not to be used for

NOTES

construction.

2. This drawing to be read in conjunction with all other relevant Engineer's and Architect's details/reports. 3. All work is to be carried out in accordance with the current British Standards, codes of practice, building regulations and Sewer Sector Guidance. 4. The exact position, level, size and use of existing sewers to be confirmed on site by the Contractor prior to commencement of any drainage works. Any

APPENDIX M – HYDRAULIC CALCULATIONS

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 1
W	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
h	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy

Design Settings

far

Rainfall Methodology	FEH-99	Time of Entry (mins)	4.00
Return Period (years)	2	Maximum Time of Concentration (mins)	30.00
Additional Flow (%)	0	Maximum Rainfall (mm/hr)	50.0
C (1km)	-0.020	Minimum Velocity (m/s)	1.00
D1 (1km)	0.339	Connection Type	Level Soffits
D2 (1km)	0.314	Minimum Backdrop Height (m)	0.200
D3 (1km)	0.183	Preferred Cover Depth (m)	1.200
E (1km)	0.304	Include Intermediate Ground	\checkmark
F (1km)	2.509	Enforce best practice design rules	\checkmark
CV	0.750		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
	(iia)	(11113)	(m)	()	(,	(11)	(,
S1LA	0.064	4 00	19 899	600	508578 855	320748 136	1 050
S1	0.034	4.00	19,966	1200	508589 755	320738 884	1 726
S1LB	0.030	4.00	19.485	600	508603.348	320726 906	1 000
S2	0.000		19.856	1200	508600.609	320751.670	1 715
S2L	0.016	4.00	19.895	600	508597.464	320754.339	1.266
S3	0.029	4.00	19.801	1200	508613.156	320766.452	1.849
S3LA	0.013	4.00	19.820	600	508606.988	320765.419	1.092
S3LB	0.056	4.00	19.839	600	508609.904	320769.213	1.310
S3LC	0.008	4.00	19.759	600	508616.075	320759.541	1.050
S4	0.000		19.782	1200	508621.089	320775.797	1.880
S4L	0.013	4.00	19.659	600	508626.212	320771.449	1.050
S5	0.013	4.00	19.344	1200	508631.300	320787.827	1.506
S5LA	0.021	4.00	19.514	600	508623.891	320785.565	1.050
S5LB	0.017	4.00	19.338	600	508636.467	320783.441	1.050
S6	0.038	4.00	19.157	1200	508635.584	320792.874	1.346
S6L	0.014	4.00	19.167	600	508632.075	320795.361	1.050
S7	0.035	4.00	19.029	1200	508585.685	320864.527	1.808
S7L	0.083	4.00	19.306	600	508576.586	320851.532	1.050
S8	0.026	4.00	18.640	1200	508610.146	320847.400	1.595
S8LA	0.017	4.00	18.563	600	508610.273	320855.272	1.050
S8LB	0.015	4.00	18.698	600	508607.542	320843.681	1.124
S9	0.000		18.484	1200	508622.671	320838.630	1.529
S9LA	0.016	4.00	18.399	600	508621.256	320847.544	1.050
S9LB	0.020	4.00	18.590	600	508620.062	320834.904	1.105
S10	0.028	4.00	18.361	1200	508636.401	320829.016	1.579
S10LA	0.020	4.00	18.276	600	508632.732	320839.531	1.050
S10LB	0.022	4.00	18.507	600	508633.812	320825.319	1.124
S11	0.004	4.00	18.333	1200	508642.300	320824.886	1.581
S11L	0.018	4.00	18.146	600	508645.996	320830.164	1.050
S12	0.025	4.00	18.276	1500	508652.722	320817.588	1.726
S13	0.029	4.00	18.487	1200	508700.125	320781.318	1.425
S14	0.017	4.00	18.019	1200	508679.241	320802.047	1.463
S14L	0.027	4.00	18.050	600	508676.227	320799.010	1.050
S15	0.032	4.00	17.916	1500	508672.361	320808.875	1.650
S16	0.008	4.00	17.301	1200	508684.201	320849.001	1.264
S16LA	0.120	4.00	17.169	600	508682.952	320863.717	0.909
S16LB	0.033	4.00	17.357	600	508679.002	320848.913	1.050
517	0.020	4.00	17.328	1500	508686.810	320841.444	1.563
518	0.000		17.180	1500	508699.687	320841.201	1.446

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

-	Farrow	Walsh	Consul	ting Ltd		File: FW20)53 Drai	nage Strat	tegy.pfd	I Page 2				
tarrow	62 High	cross	Street	-		Network:	Storm S	trategy		Cedar Drive, Bourne				
walch	Leiceste	r				DM		0,		Linco	Inshire PE	10 9SQ		
vaisii	LE1 4NN	J				December	r 2021			Drain	Drainage Strategy			
											0	01		
						Nod	<u>es</u>							
	Na	me	Area	T of E	Cover	Diamet	er l	Easting	North	ning	Depth			
			(ha)	(mins)	Level	(mm))	(m)	(m)	(m)			
			. ,	. ,	(m)			. ,	•		. ,			
	ни	/1	0.000		17.004	12	00 50	8705.770	320843	3.350	1.286			
	HV	/2	0.000	4.00	16.720	12	00 50	8737.158	320860).706	1.002			
	S19	Э	0.000		16.720	12	00 50	8741.900	320865	5.062	1.040			
	нм	V 3	0.000		16.581	. 12	00 50	8750.200	320875	5.859	0.981			
						<u>Link</u>	<u>(S</u>							
N					- () (F _1	Class.	D'-	T - (C	Dain		
Name	US Nodo	DS	Ler	igtn Ki m)	s (mm) /	US IL (m)		Fall		Dia (mm)	I OF C	Kain (mm/hr)		
1 000			1/1	11] 207	0,600	10 0/0	10 215	(11)		150	(11115)	(mmynr) 50.0		
1.000	51LA 51	51	14.	237 772	0.000	18 240	18 141	0.004	169.4	225	4.12	50.0		
2 000	S11 B	S1	18	117	0.000	18 485	18 315	0.000	106.6	150	4.33	50.0		
1 002	5110	53	19	390	0.600	18 141	18 027	0.170	170.1	225	4.91	50.0		
3 000	521	52	4	124	0.600	18 629	18 216	0 413	10.0	150	4 02	50.0		
1 003	53	54	12	258	0.600	17 952	17 902	0.050	245.2	300	5 12	50.0		
4.000	S3LA	S3		254	0.600	18.728	18.102	0.626	10.0	150	4.03	50.0		
5.000	S3LB	S3	4.	266	0.600	18.529	18.102	0.427	10.0	150	4.02	50.0		
6.000	S3LC	S3	7.	502	0.600	18.709	18.102	0.607	12.4	150	4.04	50.0		
1.004	S4	S5	15.	779	0.600	17.902	17.838	0.064	246.5	300	5.38	50.0		
7.000	S4L	S4	6.	720	0.600	18.609	18.052	0.557	12.1	150	4.04	50.0		
1.005	S5	S6	6.	621	0.600	17.838	17.811	0.027	245.2	300	5.49	50.0		
8.000	S5LA	S5	7.	746	0.600	18.464	17.988	0.476	16.3	150	4.05	50.0		
9.000	S5LB	S5	6.	778	0.600	18.288	17.988	0.300	22.6	150	4.05	50.0		
1.006	S6	S12	30.	074	0.600	17.811	16.700	1.111	27.1	300	5.66	50.0		
10.000	S6L	S6	4.	301	0.600	18.117	17.961	0.156	27.6	150	4.04	50.0		
11.001	S7	S8	29.	861	0.600	17.221	17.045	0.176	169.7	225	4.60	50.0		
11.000	S7L	S7	15.	865	0.600	18.256	17.296	0.960	16.5	150	4.11	50.0		
11.002	S8	S9	15.	290	0.600	17.045	16.955	0.090	169.9	225	4.86	50.0		
				_		_								

Vel	Сар	Flow	US	DS	Σ Area	Σ Add
(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
			(m)	(m)		(I/s)
1.953	34.5	8.7	0.900	1.501	0.064	0.0
1.001	39.8	17.3	1.501	1.490	0.128	0.0
0.973	17.2	4.1	0.850	1.501	0.030	0.0
0.999	39.7	19.5	1.490	1.549	0.144	0.0
3.207	56.7	2.2	1.116	1.490	0.016	0.0
0.999	70.6	33.9	1.549	1.580	0.250	0.0
3.206	56.7	1.8	0.942	1.549	0.013	0.0
3.206	56.7	7.6	1.160	1.549	0.056	0.0
2.881	50.9	1.1	0.900	1.549	0.008	0.0
0.997	70.4	35.6	1.580	1.206	0.263	0.0
2.916	51.5	1.8	0.900	1.580	0.013	0.0
0.999	70.6	42.6	1.206	1.046	0.314	0.0
2.509	44.3	2.8	0.900	1.206	0.021	0.0
2.127	37.6	2.3	0.900	1.206	0.017	0.0
3.033	214.4	49.6	1.046	1.276	0.366	0.0
1.925	34.0	1.9	0.900	1.046	0.014	0.0
1.001	39.8	16.0	1.583	1.370	0.118	0.0
2.490	44.0	11.2	0.900	1.583	0.083	0.0
1.000	39.8	23.9	1.370	1.304	0.176	0.0
	Vel (m/s) 1.953 1.001 0.973 0.999 3.207 0.999 3.206 3.206 2.881 0.997 2.916 0.999 2.509 2.127 3.033 1.925 1.001 2.490 1.000	VeiCap(m/s)(l/s)1.95334.51.00139.80.97317.20.99939.73.20756.70.99970.63.20656.73.20656.73.20656.72.88150.90.99770.42.91651.50.99970.62.50944.32.12737.63.033214.41.92534.01.00139.82.49044.01.00039.8	VeiCapFlow(m/s)(l/s)(l/s)1.95334.58.71.00139.817.30.97317.24.10.99939.719.53.20756.72.20.99970.633.93.20656.71.83.20656.77.62.88150.91.10.99770.435.62.91651.51.80.99970.642.62.50944.32.82.12737.62.33.033214.449.61.92534.01.91.00139.816.02.49044.011.21.00039.823.9	Vel Cap Flow US (m/s) (l/s) (l/s) Depth 1.953 34.5 8.7 0.900 1.001 39.8 17.3 1.501 0.973 17.2 4.1 0.850 0.999 39.7 19.5 1.490 3.207 56.7 2.2 1.116 0.999 70.6 33.9 1.549 3.206 56.7 1.8 0.942 3.206 56.7 7.6 1.160 2.881 50.9 1.1 0.900 0.997 70.4 35.6 1.580 2.916 51.5 1.8 0.900 0.999 70.6 42.6 1.206 2.509 44.3 2.8 0.900 2.127 37.6 2.3 0.900 3.033 214.4 49.6 1.046 1.925 34.0 1.9 0.900 1.001 39.8 16.0 1.583 </td <td>Vel Cap Flow US Ds (m/s) (l/s) (l/s) Depth Depth 1.953 34.5 8.7 0.900 1.501 1.001 39.8 17.3 1.501 1.490 0.973 17.2 4.1 0.850 1.501 0.999 39.7 19.5 1.490 1.549 3.207 56.7 2.2 1.116 1.490 0.999 70.6 33.9 1.549 1.549 3.206 56.7 1.8 0.942 1.549 3.206 56.7 7.6 1.160 1.549 3.206 56.7 7.6 1.160 1.549 3.206 56.7 7.6 1.160 1.549 0.997 70.4 35.6 1.580 1.206 2.916 51.5 1.8 0.900 1.206 2.509 44.3 2.8 0.900 1.206 3.033 214.4 49.6</td> <td>Vel Cap Flow US DS Σ Area (m/s) (l/s) (l/s) Depth Depth (m) (m) 1.953 34.5 8.7 0.900 1.501 0.064 1.001 39.8 17.3 1.501 1.490 0.128 0.973 17.2 4.1 0.850 1.501 0.030 0.999 39.7 19.5 1.490 1.549 0.144 3.207 56.7 2.2 1.116 1.490 0.016 0.999 70.6 33.9 1.549 1.549 0.013 3.206 56.7 1.8 0.942 1.549 0.013 3.206 56.7 7.6 1.160 1.549 0.008 0.997 70.4 35.6 1.580 1.206 0.263 2.916 51.5 1.8 0.900 1.580 0.013 0.999 70.6 42.6 1.206 1.046 0.314</td>	Vel Cap Flow US Ds (m/s) (l/s) (l/s) Depth Depth 1.953 34.5 8.7 0.900 1.501 1.001 39.8 17.3 1.501 1.490 0.973 17.2 4.1 0.850 1.501 0.999 39.7 19.5 1.490 1.549 3.207 56.7 2.2 1.116 1.490 0.999 70.6 33.9 1.549 1.549 3.206 56.7 1.8 0.942 1.549 3.206 56.7 7.6 1.160 1.549 3.206 56.7 7.6 1.160 1.549 3.206 56.7 7.6 1.160 1.549 0.997 70.4 35.6 1.580 1.206 2.916 51.5 1.8 0.900 1.206 2.509 44.3 2.8 0.900 1.206 3.033 214.4 49.6	Vel Cap Flow US DS Σ Area (m/s) (l/s) (l/s) Depth Depth (m) (m) 1.953 34.5 8.7 0.900 1.501 0.064 1.001 39.8 17.3 1.501 1.490 0.128 0.973 17.2 4.1 0.850 1.501 0.030 0.999 39.7 19.5 1.490 1.549 0.144 3.207 56.7 2.2 1.116 1.490 0.016 0.999 70.6 33.9 1.549 1.549 0.013 3.206 56.7 1.8 0.942 1.549 0.013 3.206 56.7 7.6 1.160 1.549 0.008 0.997 70.4 35.6 1.580 1.206 0.263 2.916 51.5 1.8 0.900 1.580 0.013 0.999 70.6 42.6 1.206 1.046 0.314

arrow valsh	Farrow Walsh Consulting Ltd 62 Highcross Street Leicester LE1 4NN					File: FW2053 Drainage Strategy.pfd Network: Storm Strategy DM December 2021 <u>Links</u>					Page 3 Cedar Drive, Bourne Lincolnshire PE10 9SQ Drainage Strategy		
Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain		
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)		
12.000	S8LA	S8	7.873	0.600	17.513	17.120	0.393	20.0	150	4.06	50.0		
13.000	S8LB	S8	4.540	0.600	17.574	17.120	0.454	10.0	150	4.02	50.0		
11.003	S9	S10	16.761	0.600	16.955	16.857	0.098	171.0	225	5.14	50.0		
14.000	S9LA	S9	9.025	0.600	17.349	17.030	0.319	28.3	150	4.08	50.0		
15.000	S9LB	S9	4.548	0.600	17.485	17.030	0.455	10.0	150	4.02	50.0		
11.004	S10	S11	7.201	0.600	16.782	16.752	0.030	240.0	300	5.26	50.0		
16.000	S10LA	S10	11.137	0.600	17.226	16.932	0.294	37.9	150	4.11	50.0		
17.000	S10LB	S10	4.513	0.600	17.383	16.932	0.451	10.0	150	4.02	50.0		
11.005	S11	S12	12.723	0.600	16.752	16.700	0.052	244.7	300	5.47	50.0		
18.000	S11L	S11	6.444	0.600	17.096	16.902	0.194	33.2	150	4.06	50.0		
1.007	S12	S15	21.485	0.600	16.550	16.266	0.284	75.7	450	5.81	50.0		
19.000	S13	S14	29.425	0.600	17.062	16.556	0.506	58.2	225	4.29	50.0		
19.001	S14	S15	9.694	0.600	16.556	16.491	0.065	149.1	225	4.44	50.0		
20.000	S14L	S14	4.278	0.600	17.000	16.631	0.369	11.6	150	4.02	50.0		
1.008	S15	S17	35.630	0.600	16.266	15.765	0.501	71.1	450	6.06	50.0		
21.000	S16LA	S16	14.769	0.600	16.260	16.112	0.148	99.8	150	4.24	50.0		
21.001	S16	S17	7.994	0.600	16.037	15.990	0.047	170.1	225	4.38	50.0		
22.000	S16LB	S16	5.200	0.600	16.307	16.112	0.195	26.7	150	4.04	50.0		
1.009	S17	S18	12.879	0.600	15.765	15.734	0.031	415.5	450	6.27	50.0		
1.010	S18	HW1	6.452	0.600	15.734	15.718	0.016	403.3	450	6.38	50.0		
1.011	HW2	S19	6.440	0.600	15.718	15.680	0.038	169.5	225	4.11	50.0		
1.012	S19	HW3	13.618	0.600	15.680	15.600	0.080	170.2	225	4.33	50.0		

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
				(m)	(m)		(I/s)
12.000	2.260	39.9	2.3	0.900	1.370	0.017	0.0
13.000	3.204	56.6	2.0	0.974	1.370	0.015	0.0
11.003	0.997	39.6	28.7	1.304	1.279	0.212	0.0
14.000	1.900	33.6	2.2	0.900	1.304	0.016	0.0
15.000	3.205	56.6	2.7	0.955	1.304	0.020	0.0
11.004	1.010	71.4	38.2	1.279	1.281	0.282	0.0
16.000	1.640	29.0	2.7	0.900	1.279	0.020	0.0
17.000	3.203	56.6	3.0	0.974	1.279	0.022	0.0
11.005	1.000	70.7	41.2	1.281	1.276	0.304	0.0
18.000	1.752	31.0	2.4	0.900	1.281	0.018	0.0
1.007	2.339	372.0	94.2	1.276	1.200	0.695	0.0
19.000	1.718	68.3	3.9	1.200	1.238	0.029	0.0
19.001	1.068	42.5	9.9	1.238	1.200	0.073	0.0
20.000	2.975	52.6	3.7	0.900	1.238	0.027	0.0
1.008	2.413	383.7	108.4	1.200	1.113	0.800	0.0
21.000	1.006	17.8	16.3	0.759	1.039	0.120	0.0
21.001	0.999	39.7	21.8	1.039	1.113	0.161	0.0
22.000	1.957	34.6	4.5	0.900	1.039	0.033	0.0
1.009	0.991	157.6	133.0	1.113	0.996	0.981	0.0
1.010	1.006	160.0	133.0	0.996	0.836	0.981	0.0
1.011	1.001	39.8	0.0	0.777	0.815	0.000	0.0
1.012	0.999	39.7	0.0	0.815	0.756	0.000	0.0

arrow walsh	Farrow 62 Hig Leicest LE1 4N	v Walsh hcross S er IN	Consulti itreet	ng Ltd		File: FV Netwo DM Decem	V2053 rk: Stc ber 2(3 Draina orm Str 021	age Strateg ategy	y.pfd	Page 4 Cedar Driv Lincolnshii Drainage S	e, Bourne re PE10 9SQ trategy	
						<u>Pipelin</u>	e Sche	edule					
Lir	nk Le	ngth	Slope	Dia	Link	US CL	US	S IL	US Depth	DS CL	DS IL	DS Depth	
4.04		(m)	(1:X)	(mm)	Туре	(m)	r)	m)	(m)	(m)	(m)	(m)	
1.00	00 14	1.297	26.8	150	1	19.899	18.	.849	0.900	19.966	18.315	1.501	
1.00		0.//2	169.4	225	1	19.966	18.	.240	1.501	19.856	18.141	1.490	
2.00	10 10	3.117	100.0	150	1	19.465	10.	.485	0.850	19.900		1.501	
1.00	02 15	1 1 2 4	10.1	150	1	10 205	10.	620	1.490	10 956	10.027	1.549	
1.00		+.124) 758	245.2	300	1	10 201	17	029	1.110	10 792	0 17 002	1.490	
1.00	05 12	2.230	10.0	150	1	10 001	10 IV	.952 770	1.349	10 001	10 102	1 5/0	
4.00		1 266	10.0	150	1	10 920	10. 10	520	0.942	10 201	L 10.102	1.549	
5.00	00 -	+.200 7 502	12.4	150	1	10.750	10.	700	0.000	10 001	10.102	1.549	
1.00	00 / 0/ 15	502	246 5	300	1	10 792	17	.709 002	1 5 80	10 2//	1 17 929	1.049	
7.00	04 1.	5.775	12.1	150	1	10 650	10 10	602	0.000	10 782	12 052	1.200	
1.00	00 0 05 6	5.621	2/15 2	300	1	10 3//	17	828	1 206	10 157	7 17 811	1.046	
8.00		7 746	16.3	150	1	19 514	18	464	0 900	19 34/	1 17 988	1 206	
9.00		5 778	22.6	150	1	19 339	18	.404 288	0.900	19 34/	1 17 988	1 206	
1.00	06 30	074	27.0	300	1	19 157	' <u>1</u> 0. ' 17	811	1 046	18 276	5 16 700	1 276	
10 (000 4	1 301	27.6	150	1	19 167	' 18	117	0.900	19 157	7 17 961	1 046	
11.(001 29	9.861	169.7	225	1	19.029	17.	.221	1.583	18.640) 17.045	1.370	
11.(000 15	5.865	16.5	150	1	19.306	18.	.256	0.900	19.029	17.296	1.583	
11.0	002 15	5.290	169.9	225	1	18.640	17.	.045	1.370	18.484	16.955	1.304	
12.0	000 7	7.873	20.0	150	1	18.563	17.	.513	0.900	18.640) 17.120	1.370	
13.0	200 4	1.540	10.0	150	1	18.698	17.	.574	0.974	18.640) 17.120	1.370	
11.0	003 16	5.761	171.0	225	1	18.484	16.	.955	1.304	18.361	l 16.857	1.279	
14.0	000 9	9.025	28.3	150	1	18.399	17.	.349	0.900	18.484	17.030	1.304	
15.0	000 4	1.548	10.0	150	1	18.590	17.	.485	0.955	18.484	17.030	1.304	
11.0	004 7	7.201	240.0	300	1	18.361	16.	.782	1.279	18.333	3 16.752	1.281	
		Link	US	Dia	N	lode	мн	DS	Dia	Node	e MH		
			Node	e (mm) т	уре	Туре	Node	e (mm)	Туре	Туре		
		1.000	S1LA	600) Ma	nhole	1	S1	1200	Manho	ole 1		
		1.001	S1	1200) Ma	inhole	1	S2	1200	Manho	ole 1		
		2.000	SILB	600) Ma	inhole	1	51	1200	Manho	ble 1		
		1.002	52	1200		innoie	1	53	1200	Manho	ne I		
		3.000	52L	1200		nholo	1	52 C/	1200	Manho	ne I		
		4 000	53I A	600		nhole	1	54	1200	Manho	1 1 1		
		5.000	S3LB	600) Ma	inhole	1	53	1200	Manho	ole 1		
		6.000	S3LC	600) Ma	nhole	1	S3	1200	Manho	ole 1		
		1.004	S4	1200) Ma	inhole	1	S5	1200	Manho	ole 1		
		7.000	S4L	600) Ma	inhole	1	S4	1200	Manho	ole 1		
		1.005	S5	1200) Ma	inhole	1	S6	1200	Manho	ole 1		
		8.000	S5LA	600) Ma	inhole	1	S5	1200	Manho	ole 1		
		9.000	S5LB	600) Ma	inhole	1	S5	1200	Manho	ole 1		
		1.006	S6	1200) Ma	inhole	1	S12	1500	Manho	ole 1		
		10.000) S6L	600) Ma	inhole	1	S6	1200	Manho	ole 1		
		11.001	L S7	1200) Ma	inhole	1	S8	1200	Manho	ole 1		
		11.000) S/L	600) Ma	inhole	1	57	1200	Manho	ble 1		
		12.002	2 58) col A	1200		nnole	1	22	1200	Manho	ne I		
		12.000	, ארא א ארא ארא ארא ארא ארא ארא ארא ארא א	500		nhole	1 1	50 52	1200	Manho	אר ב אם 1		
		11 003	, 30LD	1200) Ma	nhole	⊥ 1	50 510	1200	Manho	ne i		
		14 000	, 55) 591A	600) Ma	nhole	+ 1	20	1200	Manho	ne 1		
		15.000) S9LR	600) Ma	inhole	1	S9	1200	Manho	ole 1		
		11.004	\$ \$10	1200) Ma	inhole	1	S11	1200	Manho	ole 1		

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

	-		<u> </u>					<u> </u>				
	Farr	ow Walsh	Consulti	ng Ltd	File: F	W2053	Draina	ge Strateg	y.pfd	Page 5	-	
arrow	62 F	lighcross	Street		Netw	ork: Sto	orm Stra	ategy		Cedar Drive	e, Bourne	
walsh	Leic	ester			DM					Lincolnshire	e PE10 9SQ	
	LE1	4NN			Decer	December 2021 Drainage S						
					Dinali	aa Caba	مارزام					
					Pipeili	ne Sche	aule					
Lir	nk	Length	Slope	Dia L	ink US C	L US	SIL U	JS Depth	DS CL	DS IL	DS Depth	
		(m)	(1:X)	(mm) T	ype (m)	(n	n)	(m)	(m)	(m)	(m)	
16.0	000	11.137	37.9	150 1	18.27	6 17.	226	0.900	18.361	16.932	1.279	
17.0	000	4.513	10.0	150 1	18.50	7 17.	383	0.974	18.361	16.932	1.279	
11.0	005	12.723	244.7	300 1	18.33	3 16.	752	1.281	18.276	5 16.700	1.276	
18.0	000	6.444	33.2	150 1	18.14	6 17.	096	0.900	18.333	16.902	1.281	
1.00	07	21.485	75.7	450 1	18.27	6 16.	550	1.276	17.916	6 16.266	1.200	
19.0	000	29.425	58.2	225 1	18.48	7 17.	062	1.200	18.019	16.556	1.238	
19.0	001	9.694	149.1	225 1	18.01	9 16.	556	1.238	17.916	16.491	1.200	
20.0	000	4.278	11.6	150 1	18.05	0 17.	000	0.900	18.019	16.631	1.238	
1.00	08	35.630	71.1	450 1	17.91	6 16.	266	1.200	17.328	15.765	1.113	
21.0	000	14.769	99.8	150 1	17.16	9 16.	260	0.759	17.301	16.112	1.039	
21.0	001	7.994	170.1	225 1	17.30	1 16.	037	1.039	17.328	15.990	1.113	
22.0	000	5.200	26.7	150 1	17.35	7 16.	307	0.900	17.301	16.112	1.039	
1.00	09	12.879	415.5	450 1	17.32	8 15.	765	1.113	17.180	15.734	0.996	
1.03	10	6.452	403.3	450 1	17.18	0 15.	734	0.996	17.004	15.718	0.836	
1.03	11	6.440	169.5	225 1	16.72	0 15.	718	0.777	16.720	15.680	0.815	
1.02	12	13.618	170.2	225 1	16.72	0 15.	680	0.815	16.581	15.600	0.756	
		Link	US	Dia	Node -	MH -	DS	Dia	Node	e MH		
		4 6 000	NODE	e (mm)	Туре	Type	Node	e (mm)	Туре	e Type		
		16.000		A 600	Manhole	1	510	1200	Manno	DIE 1		
		17.000) SIULE	3 600	Manhole	1	510	1200	Manno	DIE 1		
		11.005	5 S11	1200	Manhole	1	512	1500	Manno	DIE 1		
		18.000) S11L	600	Manhole	1	S11	1200	Manho	ble 1		
		1.007	512	1500	Manhole	1	515	1500	Manno	DIE 1		
		19.000) 513	1200	Manhole	1	514	1200	Manno	DIE 1		
		19.00		1200	iviannoie	1	515	1500	ivianno			
		20.000	J S14L	1500	Manhole	1	514	1200	Manho	DIE I		
		1.008	515 516U	1500	Manhole	1	517	1200	Manho	ne I		
		21.000	J SIGLA	4 600	Manhole	1	510	1200	Manho	ne I		
		21.00			Manhole	1	517	1200	Manho	ne I		
		22.000	7 210Lt 7 210Lt	1500	Manhala	1	C10 DTC	1500	Manha	ne 1		
		1.009	51/ C10	1500	Manhala	1 1		1200	Manha	ne 1		
		1.010	210	1200	Markel	1		1200	Mark	ne 1		
		1.011		1200	Manhole	1 1	П/V/J 272	1200	Manha	ne 1		
		1.012	213	1200	warmore	T	п vv 3	1200	IVIdIIIIC	ne 1		
					Manh	ole Sche	edule					

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
S1LA	508578.855	320748.136	19.899	1.050	600	Q				
						O	0	1.000	18.849	150
S1	508589.755	320738.884	19.966	1.726	1200	في د	1	2.000	18.315	150
							2	1.000	18.315	150
						1	0	1.001	18.240	225
S1LB	508603.348	320726.906	19.485	1.000	600	° ~				
							0	2.000	18.485	150

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 6
arrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
valsh	Leicester	DM	Lincolnshire PE10 9SQ
VCISII	LE1 4NN	December 2021	Drainage Strategy

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	าร	Link	IL (m)	Dia (mm)
S2	508600.609	320751.670	19.856	1.715	1200	. 0	1	3.000	18.216	150
							2	1.001	18.141	225
						2	0	1.002	18.141	225
S2L	508597.464	320754.339	19.895	1.266	600	Q				
							0	3.000	18.629	150
S3	508613.156	320766.452	19.801	1.849	1200	0	1	6.000	18.102	150
							2	5.000	18.102	150
						3	3	4.000	18.102	150
						4 1	4	1.002	18.027	225
							0	1.003	17.952	300
S3LA	508606.988	320765.419	19.820	1.092	600	()→0				
							0	4.000	18.728	150
S3LB	508609.904	320769.213	19.839	1.310	600	Q				
						0	0	5.000	18.529	150
S3LC	508616.075	320759.541	19.759	1.050	600	0				
							0	6.000	18.709	150
S4	508621.089	320775.797	19.782	1.880	1200		1	7.000	18.052	150
							2	1.003	17.902	300
C 41	500626 242	220774 440	10.050	1 050	600	-	0	1.004	17.902	300
54L	508626.212	320771.449	19.659	1.050	600	0				
							0	7.000	18.609	150
S5	508631.300	320787.827	19.344	1.506	1200	r	1	9.000	17.988	150
							2	8.000	17.988	150
						2 3 1	3	1.004	17.838	300
S5LA	508623.891	320785.565	19.514	1.050	600	⊖→0	0	1.005	17.030	
							0	8.000	18.464	150
S5LB	508636.467	320783.441	19.338	1.050	600	•				
							0	9.000	18.288	150
S6	508635.584	320792.874	19.157	1.346	1200	1 7	1	10.000	17.961	150
							2	1.005	17.811	300
						2	0	1.006	17.811	300
S6L	508632.075	320795.361	19.167	1.050	600		_		40	
							0	10.000	18.117	150

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 7
arrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
valsti	LE1 4NN	December 2021	Drainage Strategy

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
S7	508585.685	320864.527	19.029	1.808	1200		1	11.000	17.296	150
						1	0	11.001	17.221	225
S7L	508576.586	320851.532	19.306	1.050	600	1				
							0	11.000	18.256	150
S8	508610.146	320847.400	18.640	1.595	1200	2 3.	1	13.000	17.120	150
						\square	2	12.000	17.120	150
							3	11.001	17.045	225
S8LA	508610.273	320855.272	18.563	1.050	600		0	11.002	17.045	225
						\bigcirc				
<u></u>	500007 540	220042 604	40.000			ů ř	0	12.000	17.513	150
SALR	508607.542	320843.681	18.698	1.124	600	ľ				
							0	13.000	17.574	150
S9	508622.671	320838.630	18.484	1.529	1200	2	1	15.000	17.030	150
						, A	2	14.000	17.030	150
							3	11.002	16.955	225
<u></u>	500624 256	220047 544	40.200	1 050	600	1	0	11.003	16.955	225
S9LA	508621.256	320847.544	18.399	1.050	600	Q				
<u></u>	500620.062	220024.004	40.500	4 4 0 5	600	Ŏ	0	14.000	17.349	150
SALR	508620.062	320834.904	18.590	1.105	600	Å				
							0	15.000	17.485	150
S10	508636.401	320829.016	18.361	1.579	1200	2	1	17.000	16.932	150
						- X	2	16.000	16.932	150
							3	11.003	16.857	225
510LA	508632 732	320839 531	18 276	1 050	600		0	11.004	16.782	300
51017	500052.752	520035.351	10.270	1.050	000	Q				
	500600.040		40 507			Ŏ	0	16.000	17.226	150
S10LB	508633.812	320825.319	18.507	1.124	600	(
							0	17.000	17.383	150
S11	508642.300	320824.886	18.333	1.581	1200	2	1 2	18.000 11.004	16.902 16.752	150 300
						0	0	11.005	16.752	300
S11L	508645.996	320830.164	18.146	1.050	600	\mathcal{D}				
						0	0	18.000	17.096	150

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 8
arrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
valsti	LE1 4NN	December 2021	Drainage Strategy

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
S12	508652.722	320817.588	18.276	1.726	1500		1	11.005	16.700	300
							2	1.006	16.700	300
						2	0	1.007	16.550	450
S13	508700.125	320781.318	18.487	1.425	1200	•				
							0	19.000	17.062	225
S14	508679.241	320802.047	18.019	1.463	1200	0.	1	20.000	16.631	150
							2	19.000	16.556	225
						1 2	0	19.001	16.556	225
S14L	508676.227	320799.010	18.050	1.050	600	()				
							0	20.000	17.000	150
S15	508672.361	320808.875	17.916	1.650	1500	Ŷ	1	19.001	16.491	225
							2	1.007	16.266	450
						1	0	1.008	16.266	450
S16	508684.201	320849.001	17.301	1.264	1200	2	1	22.000	16.112	150
						1-0	2	21.000	16.112	150
						ŏ	0	21.001	16.037	225
S16LA	508682.952	320863.717	17.169	0.909	600	P				
						ő	0	21.000	16.260	150
S16LB	508679.002	320848.913	17.357	1.050	600	()→0			46.007	150
C 4 7	500000 010	220044 444	47.220	4 5 6 2	4500		0	22.000	16.307	150
517	508686.810	320841.444	17.328	1.563	1500		1	21.001	15.990	225
						→ 0	2	1.008	15.765	450
	500000 007		47.400		4500	2	0	1.009	15.765	450
518	508699.687	320841.201	17.180	1.446	1500	1	1	1.009	15.734	450
							0	1.010	15.734	450
HW1	508705.770	320843.350	17.004	1.286	1200		1	1.010	15.718	450
						1-0				
HW2	508737.158	320860.706	16.720	1.002	1200	() ^p				
							0	1.011	15.718	225
S19	508741.900	320865.062	16.720	1.040	1200	A	1	1.011	15.680	225
						1	0	1.012	15.680	225

-	Farrow Walsh	Consulting Ltd		File: FW20	053 Drai	inage Stra	tegy.pfd	Page 9			
farrow	62 Highcross S	treet		Network:	Storm S	Strategy	0/1	Cedar Drive, Bourne			
wolch	Leicester			DM				Lincolnshire PE10 9SQ			
vvaisii	IF1 4NN			Decembe	er 2021			Drainage Strategy			
									58	1	
Manhole Schedule											
Node	Easting	Northing	CL	Depth	Dia	Conne	ections	Link	IL (Dia	
	(m)	(m)	(m)	(m)	(mm)				(m)	(mm)	
HW3	508750.200	320875.859	16.581	0.981	1200		1	1.012	15.600	225	
)				
Simulation Settings											
Rainfal	l Methodology	FFH-99		F (1km)	2 509	itibbA	onal Sto	rage (m³/h	a) 00	
nama	C (1km)	-0.020		Summe	er CV	0 950	Che	erk Disch	arge Rate	(s) 🗸	
	D1 (1km)	0 339		Winte	er CV	0.950	Circ	.ek Bisch 1	00 vear (L	(s) 4.6	
	D2 (1km)	0 314		Analysis S	need	Detailed	Cher	- rk Discha	arge Volun	ne x	
	D2 (1km)	0.314	S	kin Steady	State	x	Check	er Disent			
	E (1km)	0.105	Drain Do	wn Time (r	mins)	^ 240					
	2 (1811)	0.504		wit thire (i	11113)	240					
				Storm Du	rations						
	30 60	120 180	240	360	480	600	720	960	1440		
	Ret	turn Period (Climate	Change A	Addition	al Area	Additiona	al Flow			
		(years)	(CC	%)	(A 9	%)	(Q %	6)			
		2		0		10		0			
		30		0		10		0			
		100		40		10		0			
			Pre-dev	velopment	Dischar	rge Rate					
		Site Make	un Gr	eenfield	OBar	/OMed.co	onversion	factor	1 111		
	G	reenfield Meth	nod FF	Н	QDui	Growth	Factor 100) vear	2 48		
	Positively	Drained Area (ha) 1.8	805		0.0.0	Betterme	nt (%)	0		
	· controly	SAAR (m	m) 59	4			(DMed	- 4.6		
		с, с (Н	ost 1					OBar	5.1		
		BFIH	ost 0.3	379			Q 100 vea	r (l/s)	12.6		
		Reg	ion 1				. ,	())			
		N	nde \$19	Online Hyr	iro-Brak	e [®] Contro	ol				
		<u></u>	<u>, ac 015</u>	<u>onne ny</u> e		<u>e contra</u>	<u>.</u>				
	Fla	ap Valve x			0	bjective	(HE) Mini	mise ups	stream sto	rage	
Rep	places Downstre	am Link 🗸			Sump A	vailable	\checkmark				
	Invert L	evel (m) 15.6	80	Р	roduct N	Number	CTL-SHE-0	0100-460	00-1100-4	600	
	Design De	epth (m) 1.10	0	Min Outle	et Diame	eter (m)	0.150				
	Design Fl	low (l/s) 4.6		Min Node	Diamete	er (mm)	1200				
			<u>Node S</u>	1LA Online	<u>Orifice</u>	<u>Control</u>					
			Ι.		····)			C . (* ·	t. 0.00		
I	Replaces Downs	Flap Valve x stream Link 🗸	/ In	vert Level (Diameter (m) 18 m) 0.0	075	Discharge	Coeffici	ent 0.60	00	
			<u>Node S</u>	1LB Online	Orifice	Control					
		Flan Value - M		vert Level (m) 10	2 / 85	Discharge	Cooffici	ont 050	10	
	Renlaces Downs	tream Link	/ in	Diametor (iii) 18 m) ∩≀	075	Discinarge	COEIIIC	ent 0.0U		
	neplaces DOWIIS			Diameter (, iii) 0.0						

c	Farrow Walsh Consulting Lt	d	File: FW2053	Drainage Str	rategy.pfd	Page 10					
tarrow	62 Highcross Street		Network: Storm Strategy			Cedar Drive	, Bourne				
walsh	Leicester		DM			Lincolnshire PE10 9SQ					
	I LE1 4NN		December 202	21		Drainage Strategy					
Node S2L Online Orifice Control											
	Flap Valve	x Ir	Nert Level (m)	18.629	Discharge	Coefficient	0.600				
		V	Diameter (m)	0.075							
Node S3LA Online Orifice Control											
	Flan Valve	v Ir	wert Level (m)	18 728	Discharge	Coefficient	0 600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075	Discharge	coemeient	0.000				
Node S3LB Online Orifice Control											
	Flap Valve	x Ir	nvert Level (m)	18.529	Discharge	Coefficient	0.600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075							
		Node S	S3LC Online Ori	fice Control							
	Elan Value	v Ir	wort Loval (m)	19 700	Discharge	Coofficient	0 600				
	Replaces Downstream Link	x II √	Diameter (m)	0.075	Discharge	Coenicient	0.000				
		<u>Node</u>	S4L Online Orif	<u>ice Control</u>							
	Flap Valve	x Ir	nvert Level (m)	18.609	Discharge	Coefficient	0.600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075							
Node S5LA Online Orifice Control											
	Elan Valve	v Ir	wert Level (m)	18 /6/	Discharge	Coefficient	0 600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075	Discharge	coemcient	0.000				
		Nede		fine Control							
		<u>Node :</u>	SLB Unline Uri	<u>nce Control</u>							
	Flap Valve	x Ir	nvert Level (m)	18.288	Discharge	Coefficient	0.600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075							
		<u>Node</u>	S6L Online Orif	<u>ice Control</u>							
	Elap Valve	x Ir	nvert Level (m)	18,117	Discharge	Coefficient	0.600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075	2.000.001.80						
		Nodo	SZI Online Orif	ico Control							
		Noue	37L Online Onli								
	Flap Valve	x Ir	nvert Level (m)	18.256	Discharge	Coefficient	0.600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075							
		Node S	S8LA Online Ori	<u>fice Control</u>							
	Flap Valve	x Ir	nvert Level (m)	17.513	Discharge	Coefficient	0.600				
	Replaces Downstream Link	√	Diameter (m)	0.075							
		Node	S8LB Online Ori	fice Control							
	Flap Valve	x Ir	nvert Level (m)	17.574	Discharge	Coefficient	0.600				
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075							

Farrow Walsh Consulting Ltd			1	File: FW2053 Drainage Strategy.pfd				Page 11		
tarrow	62 Highcross Str	eet		Network: Storm Strategy				Cedar Drive, Bourne Lincolnshire PE10 9SQ Drainage Strategy		
walsh	Leicester			DM						
Walsh	LE1 4NN			December 2021						
			<u>Node S</u>	9LA Online	Orifice C	<u>ontrol</u>				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 17.3 n) 0.07	349 75	Discharge	Coefficient	0.600	
			<u>Node S</u>	9LB Online	Orifice C	ontrol				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 17.4 n) 0.07	185 75	Discharge	Coefficient	0.600	
			<u>Node S1</u>	LOLA Online	Orifice (<u>Control</u>				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 17.2 n) 0.07	226 75	Discharge	Coefficient	0.600	
			<u>Node S1</u>	LOLB Online	Orifice (<u>Control</u>				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 17.3 n) 0.07	383 75	Discharge	Coefficient	0.600	
			<u>Node S</u>	11L Online	Orifice C	<u>ontrol</u>				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 17.(n) 0.07)96 75	Discharge	Coefficient	0.600	
			Node S	1/I Online	Orifica (ontrol				
			Noue 3			0111101				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 17.(n) 0.07	000 75	Discharge	Coefficient	0.600	
			<u>Node S1</u>	L6LA Online	Orifice (<u>Control</u>				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 16.2 n) 0.07	260 75	Discharge	Coefficient	0.600	
			<u>Node S1</u>	L6LB Online	Orifice (<u>Control</u>				
	F Replaces Downstr	lap Valve eam Link	x Inv √	vert Level (r Diameter (r	n) 16.3 n) 0.07	807 75	Discharge	Coefficient	0.600	
		Node	HW2 Flov	w through P	ond Sto	rage Stru	<u>icture</u>			
Base Inf Co Side Inf Co	oefficient (m/hr) oefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Time to	F Invert Le half empty	Porosity evel (m) v (mins)	1.00 15.718	Mair Mair	n Channel Ler n Channel Slo Main Ch	ngth (m) ope (1:X) nannel n	35.867 1000.0 0.400
				Inlet HW1	S					
				6 A 1	D		1			
		Depth (m) 0.000 10	Area Ir (m²) 021.0	nt Area (m²) 0.0	Depth (m) 1.000	Area (m²) 1389.1	Int Area (m²) 0.0)		

farrow <mark>walsh</mark>	Farrow Walsh Consult 62 Highcross Street Leicester LE1 4NN	File: FW2053 Drainage Str Network: Storm Strategy DM December 2021	ategy.pfd	Page 12 Cedar Drive, Bourne Lincolnshire PE10 9SQ Drainage Strategy			
		<u>Node S</u>	1LA Carpark Storage Structu	<u>re</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.419 37 21.300 21.300	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.350 0.500	
		<u>Node S</u>	S2L Carpark Storage Structur	<u>e</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.540 3 9.600 9.600	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node S</u>	3LA Carpark Storage Structu	<u>re</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.465 2 6.400 6.400	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node S</u>	5LA Carpark Storage Structu	<u>re</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.159 9 8.800 8.800	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node S</u>	66L Carpark Storage Structur	<u>e</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	18.812 3 6.900 6.900	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		Node S	8LA Carpark Storage Structu	<u>re</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	17.933 9 7.200 7.200	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.500 0.500	
		Node S	9LA Carpark Storage Structu	<u>re</u>			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	18.044 7 6.700 6.700	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node S1</u>	OLA Carpark Storage Structu	ire			
Base Side	Inf Coefficient (m/hr) Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	17.921 8 14.200 14.200	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	

farrow walsh	Farrow Walsh Consult 62 Highcross Street Leicester LE1 4NN	File: FW2053 Drainage Str Network: Storm Strategy DM December 2021	ategy.pfd	Page 13 Cedar Drive, Bourne Lincolnshire PE10 9SQ Drainage Strategy			
		Node S	11L Carpark Storage Structur	r <u>e</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	17.791 8 7.700 7.700	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		Node S	14L Carpark Storage Structur	<u>re</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	17.570 12 10.900 10.900	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.350 0.350	
		<u>Node S1</u>	6LA Carpark Storage Structu	ire			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	16.539 80 25.100 25.100	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.500 0.500	
		<u>Node S</u>	1LB Carpark Storage Structur	<u>re</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.005 15 12.600 12.600	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.350 0.350	
		<u>Node S</u>	3LB Carpark Storage Structur	<u>re</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.484 28 19.700 19.700	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node Si</u>	3LC Carpark Storage Structur	r <u>e</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.404 0 8.900 8.900	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node S</u>	5LB Carpark Storage Structur	<u>re</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	18.983 5 9.000 9.000	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225	
		<u>Node S</u>	7L Carpark Storage Structur	<u>e</u>			
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	18.766 46 20.500 20.500	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.410 0.410	

Farrow Walsh Consulting Ltd			File: FW2053 Drainage St	rategy.pfd	Page 14						
tarrow	62 Highcross Street		Network: Storm Strategy		Cedar Drive, Bo	urne					
walsh	Leicester		DM December 2021		Lincolnshire PE10 9SQ						
	LEI 4NN		December 2021		Drainage Strate	ЗУ					
Node S8LB Carpark Storage Structure											
Base	Inf Coefficient (m/hr)	0.00000	Invert Level (m)	18.168	Slope (1:X)	80.0					
Side	Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	5	Depth (m)	0.400					
	Safety Factor	2.0	Width (m)	6.900	Inf Depth (m)	0.400					
	Porosity	0.30	Length (m)	6.900							
Node S9LB Carpark Storage Structure											
Base	Inf Coefficient (m/hr)	0.00000	Invert Level (m)	18.235	Slope (1:X)	80.0					
Side	Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	8	Depth (m)	0.225					
	Safety Factor	2.0	Width (m)	9.800	Inf Depth (m)	0.225					
	Porosity	0.30	Length (m)	9.800							
		Node S1	OLB Carpark Storage Structu	<u>ure</u>							
Pace	Inf Coofficient (m/hr)	0.00000	Invert Lovel (m)	10 150	Slope (1·V)	80.0					
Side	Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	16.132 8	Depth $(1.X)$	0 225					
5140	Safety Factor	2.0	Width (m)	9.700	Inf Depth (m)	0.225					
	, Porosity	0.30	Length (m)	9.700							
		Node S1	6LB Carpark Storage Structu	<u>ire</u>							
2		0.00000		46.077							
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	16.8//	Slope (1:X)	80.0					
5106	Safety Factor	2.0	Width (m)	9 400	Inf Depth (m)	0.350					
	Porosity	0.30	Length (m)	9.400	in Depth (in)	0.000					
		Node S	4L Carpark Storage Structur	. <u>e</u>							
				_							
Base	Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.304 2	Slope (1:X)	80.0					
SIDE	Safety Factor	2.0	Width (m)	3 6 300	Depth (m)	0.225					
	Porosity	0.30	Length (m)	6.300	ini Deptii (iii)	0.225					
				0.000							

Page 15 Cedar Drive, Bourne Lincolnshire PE10 9SQ Drainage Strategy

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Nodo	Peak	Level	Depth	Inflow	Node	Flood	Status
30 minute summer	S11 A	(mms) 10	10 /62	0.614	(1/5)	0 6650	0.0000	SURCHARGED
20 minute summer	SILA C1	19	10 255	0.014	20.6	0.0000	0.0000	OK
20 minute summer		10	10.333	0.115	20.0 5 0	0.1303	0.0000	
20 minute summer	SILD	10	10.755	0.234	2.5	0.0720	0.0000	OV
20 minute summer	32 521	10	10.205	0.124	25.0	0.1399	0.0000	OK
30 minute summer	52L	10	10.730	0.101	3.1 42.4	0.0287	0.0000	OK OK
30 minute summer	53	18	18.121	0.169	42.4	0.1912	0.0000	OK
30 minute summer	S3LA	18	18.808	0.080	2.5	0.0228	0.0000	ОК
30 minute summer	S3LB	18	19.215	0.686	10.9	0.1941	0.0000	SURCHARGED
30 minute summer	S3LC	17	18.767	0.058	1.6	0.0164	0.0000	OK
30 minute summer	S4	18	18.078	0.176	44.8	0.1990	0.0000	ОК
30 minute summer	S4L	18	18.689	0.080	2.5	0.0228	0.0000	ОК
30 minute summer	S5	18	18.026	0.188	54.2	0.2125	0.0000	ОК
30 minute summer	S5LA	18	18.613	0.149	4.1	0.0422	0.0000	ОК
30 minute summer	S5LB	18	18.398	0.110	3.3	0.0311	0.0000	ОК
30 minute summer	S6	18	17.922	0.111	63.7	0.1256	0.0000	ОК
30 minute summer	S6L	18	18.205	0.088	2.7	0.0248	0.0000	ОК
30 minute summer	S7	17	17.317	0.096	15.3	0.1081	0.0000	ОК
30 minute summer	S7L	20	18.847	0.591	16.2	1.8054	0.0000	SURCHARGED
30 minute summer	S8	18	17.179	0.134	26.2	0.1521	0.0000	ОК
30 minute summer	S8LA	18	17.623	0.110	3.3	0.0311	0.0000	ОК
30 minute summer	S8LB	18	17.669	0.095	2.9	0.0270	0.0000	ОК
30 minute summer	S9	18	17.109	0.154	32.8	0.1738	0.0000	ОК
30 minute summer	S9LA	18	17.450	0.101	3.1	0.0287	0.0000	ОК
30 minute summer	S9LB	18	17.624	0.139	3.9	0.0393	0.0000	ОК
30 minute summer	S10	18	16.958	0.176	45.9	0.1992	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S1LA	Orifice	S1	8.9				
30 minute summer	S1	1.001	S2	20.7	0.967	0.519	0.3590	
30 minute summer	S1LB	Orifice	S1	5.5				
30 minute summer	S2	1.002	S3	23.7	1.059	0.595	0.4333	
30 minute summer	S2L	Orifice	S2	3.0				
30 minute summer	S3	1.003	S4	42.4	1.011	0.600	0.5140	
30 minute summer	S3LA	Orifice	S3	2.4				
30 minute summer	S3LB	Orifice	S3	9.5				
30 minute summer	S3LC	Orifice	S3	1.5				
30 minute summer	S4	1.004	S5	44.7	1.001	0.635	0.7051	
30 minute summer	S4L	Orifice	S4	2.4				
30 minute summer	S5	1.005	S6	54.0	1.542	0.765	0.2322	
30 minute summer	S5LA	Orifice	S5	3.9				
30 minute summer	S5LB	Orifice	S5	3.2				
30 minute summer	S6	1.006	S12	63.5	2.683	0.296	0.7124	
30 minute summer	S6L	Orifice	S6	2.6				
30 minute summer	S7	11.001	S8	15.2	0.773	0.382	0.6081	
30 minute summer	S7L	Orifice	S7	8.7				
30 minute summer	S8	11.002	S9	26.1	0.973	0.656	0.4101	
30 minute summer	S8LA	Orifice	S8	3.2				
30 minute summer	S8LB	Orifice	S8	2.8				
30 minute summer	S9	11.003	S10	32.9	1.146	0.830	0.4813	
30 minute summer	S9LA	Orifice	S9	3.0				
30 minute summer	S9LB	Orifice	S9	3.7				
30 minute summer	S10	11.004	S11	46.0	1.059	0.644	0.3127	

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 16
row	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
lch	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 99.76%

far Wa

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S10LA	18	17.365	0.139	3.9	0.0393	0.0000	ОК
30 minute summer	S10LB	18	17.543	0.160	4.3	0.0453	0.0000	SURCHARGED
30 minute summer	S11	18	16.931	0.179	50.0	0.2025	0.0000	ОК
30 minute summer	S11L	18	17.215	0.119	3.5	0.0337	0.0000	ОК
30 minute summer	S12	18	16.721	0.171	118.2	0.3028	0.0000	ОК
30 minute summer	S13	17	17.105	0.043	5.7	0.0491	0.0000	ОК
30 minute summer	S14	18	16.643	0.087	13.7	0.0981	0.0000	ОК
30 minute summer	S14L	18	17.217	0.217	5.3	0.0614	0.0000	SURCHARGED
30 minute summer	S15	18	16.449	0.183	137.7	0.3228	0.0000	ОК
30 minute summer	S16	18	16.130	0.093	14.4	0.1052	0.0000	ОК
30 minute summer	S16LA	22	16.671	0.411	23.4	5.3558	0.0000	SURCHARGED
30 minute summer	S16LB	18	16.601	0.294	6.4	0.0833	0.0000	SURCHARGED
30 minute summer	S17	19	16.085	0.320	155.1	0.5652	0.0000	ОК
30 minute summer	S18	19	16.046	0.312	153.0	0.5518	0.0000	ОК
720 minute summer	HW1	525	15.926	0.208	27.8	0.2353	0.0000	ОК
720 minute summer	HW2	525	15.926	0.208	23.0	0.2353	0.0000	ОК
720 minute summer	S19	525	15.926	0.246	8.8	0.2778	0.0000	SURCHARGED
30 minute summer	HW3	1	15.600	0.000	4.4	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S10LA	Orifice	S10	3.7				
30 minute summer	S10LB	Orifice	S10	4.1				
30 minute summer	S11	11.005	S12	50.0	1.163	0.708	0.5476	
30 minute summer	S11L	Orifice	S11	3.4				
30 minute summer	S12	1.007	S15	118.1	2.042	0.318	1.2435	
30 minute summer	S13	19.000	S14	5.6	0.595	0.082	0.2841	
30 minute summer	S14	19.001	S15	13.6	0.966	0.321	0.1368	
30 minute summer	S14L	Orifice	S14	5.0				
30 minute summer	S15	1.008	S17	137.1	1.507	0.357	3.2220	
30 minute summer	S16	21.001	S17	14.3	0.923	0.360	0.1254	
30 minute summer	S16LA	Orifice	S16	7.2				
30 minute summer	S16LB	Orifice	S16	6.0				
30 minute summer	S17	1.009	S18	153.0	1.298	0.971	1.5321	
30 minute summer	S18	1.010	HW1	153.4	2.114	0.959	0.4961	
720 minute summer	HW1	Flow through pond	HW2	16.7	0.006	0.007	200.8651	
720 minute summer	HW2	1.011	S19	8.8	0.497	0.221	0.2516	
720 minute summer	S19	Hydro-Brake [®]	HW3	4.5				194.6

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 17
row	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
lsh	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.76%

far Wa

Node Event	US Nodo	Peak	Level	Depth	Inflow	Node	Flood	Status
30 minute summer	S1LA	(111115)	(III) 10 5 9 7	0.728	(1/S) 22 6	7 4027	0.0000	
30 minute summer	SILA S1	12	19.007	0.758	25 5	0 1 2 0 2 7	0.0000	OK
30 minute summer		20	10.400	0.108	15.2	1 4750	0.0000	
20 minute summer	SILD	10	10 245	0.013	13.5	0.2200	0.0000	OV
20 minute summer	52	10	10.545	0.204	42.1	0.2506	0.0000	
30 minute summer	52L	18	19.000	0.431	0.Z	0.1220	0.0000	SUKCHARGED
30 minute summer	53	18	18.247	0.295	//.4	0.3331	0.0000	UK
30 minute summer	S3LA	18	19.034	0.306	6.6	0.0866	0.0000	SURCHARGED
30 minute summer	S3LB	21	19.623	1.094	28.5	4.4879	0.0000	FLOOD RISK
30 minute summer	S3LC	18	18.855	0.146	4.1	0.0414	0.0000	ОК
30 minute summer	S4	18	18.195	0.293	83.3	0.3316	0.0000	OK
30 minute summer	S4L	18	18.915	0.306	6.6	0.0866	0.0000	SURCHARGED
30 minute summer	S5	18	18.123	0.285	106.8	0.3218	0.0000	ОК
30 minute summer	S5LA	18	19.129	0.665	10.7	0.1881	0.0000	SURCHARGED
30 minute summer	S5LB	18	18.764	0.476	8.7	0.1346	0.0000	SURCHARGED
30 minute summer	S6	17	17.978	0.167	141.8	0.1884	0.0000	ОК
30 minute summer	S6L	18	18.462	0.345	7.1	0.0976	0.0000	SURCHARGED
30 minute summer	S7	18	17.644	0.423	27.1	0.4785	0.0000	SURCHARGED
30 minute summer	S7L	23	18.982	0.726	42.3	11.6847	0.0000	SURCHARGED
30 minute summer	S8	18	17.570	0.525	51.7	0.5932	0.0000	SURCHARGED
30 minute summer	S8LA	19	17.960	0.447	8.7	0.1907	0.0000	SURCHARGED
30 minute summer	S8LB	18	17.960	0.386	7.6	0.1093	0.0000	SURCHARGED
30 minute summer	S9	18	17.417	0.462	66.5	0.5220	0.0000	SURCHARGED
30 minute summer	S9LA	18	17.784	0.435	8.2	0.1231	0.0000	SURCHARGED
30 minute summer	S9LB	18	18.099	0.614	10.2	0.1738	0.0000	SURCHARGED
30 minute summer	S10	18	17.134	0.352	97.6	0.3980	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S1LA	Orifice	S1	9.8				
30 minute summer	S1	1.001	S2	35.1	1.055	0.883	0.5840	
30 minute summer	S1LB	Orifice	S1	8.9				
30 minute summer	S2	1.002	S3	41.6	1.153	1.046	0.7501	
30 minute summer	S2L	Orifice	S2	7.4				
30 minute summer	S3	1.003	S4	77.2	1.112	1.093	0.8588	
30 minute summer	S3LA	Orifice	S3	6.1				
30 minute summer	S3LB	Orifice	S3	12.1				
30 minute summer	S3LC	Orifice	S3	3.9				
30 minute summer	S4	1.004	S5	83.5	1.201	1.186	1.0973	
30 minute summer	S4L	Orifice	S4	6.1				
30 minute summer	S5	1.005	S6	116.2	2.133	1.646	0.3616	
30 minute summer	S5LA	Orifice	S5	9.3				
30 minute summer	S5LB	Orifice	S5	7.8				
30 minute summer	S6	1.006	S12	131.1	3.251	0.612	1.2129	
30 minute summer	S6L	Orifice	S6	6.5				
30 minute summer	S7	11.001	S8	24.9	0.828	0.627	1.1876	
30 minute summer	S7L	Orifice	S7	9.7				
30 minute summer	S8	11.002	S9	50.5	1.270	1.270	0.6081	
30 minute summer	S8LA	Orifice	S8	7.4				
30 minute summer	S8LB	Orifice	S8	6.9				
30 minute summer	S9	11.003	S10	66.7	1.677	1.683	0.6666	
30 minute summer	S9LA	Orifice	S9	7.1				
30 minute summer	S9LB	Orifice	S9	8.9				
30 minute summer	S10	11.004	S11	97.2	1.381	1.362	0.5071	

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 18
tarrow I	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
valsti	LE1 4NN	December 2021	Drainage Strategy

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S10LA	18	17.840	0.614	10.2	0.1738	0.0000	SURCHARGED
30 minute summer	S10LB	18	18.099	0.716	11.2	0.2026	0.0000	SURCHARGED
30 minute summer	S11	18	17.076	0.324	107.3	0.3665	0.0000	SURCHARGED
30 minute summer	S11L	18	17.618	0.522	9.2	0.1477	0.0000	SURCHARGED
30 minute summer	S12	18	16.820	0.270	250.0	0.4775	0.0000	ОК
30 minute summer	S13	17	17.132	0.070	14.8	0.0796	0.0000	ОК
30 minute summer	S14	17	16.700	0.144	32.3	0.1627	0.0000	ОК
30 minute summer	S14L	19	17.645	0.645	13.8	0.9255	0.0000	SURCHARGED
30 minute summer	S15	18	16.570	0.304	297.2	0.5374	0.0000	ОК
30 minute summer	S16	19	16.311	0.274	21.1	0.3095	0.0000	SURCHARGED
30 minute winter	S16LA	29	16.814	0.554	47.2	22.8499	0.0000	SURCHARGED
30 minute summer	S16LB	20	16.995	0.688	16.8	1.7616	0.0000	SURCHARGED
30 minute summer	S17	18	16.295	0.530	324.9	0.9367	0.0000	SURCHARGED
960 minute winter	S18	930	16.211	0.477	32.5	0.8437	0.0000	SURCHARGED
960 minute winter	HW1	930	16.211	0.493	32.4	0.5581	0.0000	ОК
960 minute winter	HW2	930	16.211	0.493	19.3	0.5581	0.0000	SURCHARGED
960 minute winter	S19	930	16.211	0.531	14.6	0.6005	0.0000	SURCHARGED
30 minute summer	HW3	1	15.600	0.000	4.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S10LA	Orifice	S10	8.9				
30 minute summer	S10LB	Orifice	S10	9.7				
30 minute summer	S11	11.005	S12	106.9	1.539	1.512	0.8505	
30 minute summer	S11L	Orifice	S11	8.2				
30 minute summer	S12	1.007	S15	250.0	2.387	0.672	2.2922	
30 minute summer	S13	19.000	S14	14.6	0.786	0.214	0.5501	
30 minute summer	S14	19.001	S15	31.8	1.192	0.748	0.2593	
30 minute summer	S14L	Orifice	S14	9.2				
30 minute summer	S15	1.008	S17	294.6	1.981	0.768	4.8534	
30 minute summer	S16	21.001	S17	23.0	0.995	0.580	0.3179	
30 minute winter	S16LA	Orifice	S16	8.4				
30 minute summer	S16LB	Orifice	S16	9.5				
30 minute summer	S17	1.009	S18	322.0	2.032	2.043	2.0391	
960 minute winter	S18	1.010	HW1	32.4	0.574	0.202	1.0223	
960 minute winter	HW1	Flow through pond	HW2	18.5	0.008	0.008	527.3679	
960 minute winter	HW2	1.011	S19	14.6	0.491	0.367	0.2561	
960 minute winter	S19	Hydro-Brake®	HW3	4.6				268.3

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 19
rrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
alch	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

fa W

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S1LA	25	19.719	0.870	67.2	22.9695	0.0000	FLOOD RISK
30 minute summer	S1	18	19.102	0.862	50.4	0.9748	0.0000	SURCHARGED
30 minute summer	S1LB	22	19.255	0.770	31.5	8.3938	0.0000	FLOOD RISK
30 minute summer	S2	18	18.973	0.832	58.4	0.9415	0.0000	SURCHARGED
30 minute summer	S2L	20	19.633	1.004	16.8	1.2958	0.0000	FLOOD RISK
30 minute summer	S3	18	18.766	0.814	115.8	0.9205	0.0000	SURCHARGED
30 minute summer	S3LA	19	19.533	0.805	13.7	0.5914	0.0000	FLOOD RISK
30 minute summer	S3LB	23	19.761	1.232	58.8	16.7304	0.0000	FLOOD RISK
30 minute summer	S3LC	18	19.160	0.451	8.4	0.1275	0.0000	SURCHARGED
30 minute summer	S4	18	18.643	0.741	121.8	0.8385	0.0000	SURCHARGED
30 minute summer	S4L	19	19.380	0.771	13.7	0.6565	0.0000	FLOOD RISK
30 minute summer	S5	18	18.459	0.621	150.7	0.7019	0.0000	SURCHARGED
30 minute summer	S5LA	20	19.331	0.867	22.1	2.9650	0.0000	FLOOD RISK
30 minute summer	S5LB	20	19.105	0.817	17.9	1.8264	0.0000	FLOOD RISK
30 minute summer	S6	18	18.334	0.523	195.1	0.5915	0.0000	SURCHARGED
30 minute summer	S6L	20	18.911	0.794	14.7	1.0209	0.0000	FLOOD RISK
30 minute summer	S7	18	18.516	1.295	45.8	1.4641	0.0000	SURCHARGED
30 minute winter	S7L	29	19.159	0.903	67.3	33.7157	0.0000	FLOOD RISK
30 minute summer	S8	18	18.302	1.257	72.2	1.4220	0.0000	SURCHARGED
30 minute summer	S8LA	21	18.309	0.796	22.0	5.3773	0.0000	FLOOD RISK
30 minute summer	S8LB	21	18.407	0.833	15.8	3.0301	0.0000	FLOOD RISK
30 minute summer	S9	18	18.041	1.086	82.6	1.2277	0.0000	SURCHARGED
30 minute summer	S9LA	21	18.268	0.919	16.8	2.7203	0.0000	FLOOD RISK
30 minute summer	S9LB	21	18.408	0.923	21.0	3.4749	0.0000	FLOOD RISK
30 minute summer	S10	18	17.652	0.870	122.7	0.9836	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S1LA	Orifice	S1	10.7				
30 minute summer	S1	1.001	S2	48.0	1.208	1.207	0.6670	
30 minute summer	S1LB	Orifice	S1	10.1				
30 minute summer	S2	1.002	S3	55.9	1.406	1.407	0.7712	
30 minute summer	S2L	Orifice	S2	11.5				
30 minute summer	S3	1.003	S4	112.0	1.590	1.585	0.8632	
30 minute summer	S3LA	Orifice	S3	10.3				
30 minute summer	S3LB	Orifice	S3	12.8				
30 minute summer	S3LC	Orifice	S3	7.4				
30 minute summer	S4	1.004	S5	120.1	1.706	1.705	1.1111	
30 minute summer	S4L	Orifice	S4	10.1				
30 minute summer	S5	1.005	S6	152.6	2.183	2.160	0.4662	
30 minute summer	S5LA	Orifice	S5	10.7				
30 minute summer	S5LB	Orifice	S5	10.4				
30 minute summer	S6	1.006	S12	194.2	3.342	0.906	2.1178	
30 minute summer	S6L	Orifice	S6	10.2				
30 minute summer	S7	11.001	S8	43.1	1.083	1.082	1.1876	
30 minute winter	S7L	Orifice	S7	10.9				
30 minute summer	S8	11.002	S9	67.0	1.684	1.685	0.6081	
30 minute summer	S8LA	Orifice	S8	9.9				
30 minute summer	S8LB	Orifice	S8	10.1				
30 minute summer	S9	11.003	S10	80.5	2.024	2.031	0.6666	
30 minute summer	S9LA	Orifice	S9	10.4				
30 minute summer	S9LB	Orifice	S9	10.9				
30 minute summer	S10	11.004	S11	122.0	1.733	1.708	0.5071	

•	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy.pfd	Page 20
tarrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
valsti	LE1 4NN	December 2021	Drainage Strategy

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S10LA	21	18.056	0.830	21.0	3.3590	0.0000	FLOOD RISK
30 minute summer	S10LB	21	18.323	0.940	23.1	3.3890	0.0000	FLOOD RISK
30 minute summer	S11	18	17.562	0.810	133.5	0.9162	0.0000	SURCHARGED
30 minute summer	S11L	20	17.976	0.880	18.9	2.6808	0.0000	FLOOD RISK
30 minute summer	S12	18	17.375	0.825	350.6	1.4572	0.0000	SURCHARGED
30 minute summer	S13	18	17.313	0.251	30.5	0.2835	0.0000	SURCHARGED
30 minute summer	S14	18	17.219	0.663	54.2	0.7499	0.0000	SURCHARGED
30 minute summer	S14L	21	17.795	0.795	28.4	5.8283	0.0000	FLOOD RISK
30 minute summer	S15	18	17.120	0.854	432.2	1.5086	0.0000	SURCHARGED
1440 minute winter	S16	1410	16.716	0.679	7.4	0.7675	0.0000	SURCHARGED
30 minute winter	S16LA	31	17.005	0.745	97.3	58.6556	0.0000	FLOOD RISK
30 minute summer	S16LB	22	17.330	1.023	34.7	8.0159	0.0000	FLOOD RISK
1440 minute winter	S17	1410	16.716	0.951	44.7	1.6796	0.0000	SURCHARGED
1440 minute winter	S18	1410	16.716	0.982	44.5	1.7344	0.0000	SURCHARGED
1440 minute winter	HW1	1410	16.716	0.998	44.5	1.1282	0.0000	ОК
1440 minute winter	HW2	1410	16.716	0.998	24.4	1.1282	0.0000	FLOOD RISK
1440 minute winter	S19	1410	16.715	1.035	13.7	1.1706	0.0000	FLOOD RISK
30 minute summer	HW3	1	15.600	0.000	4.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S10LA	Orifice	S10	10.4				
30 minute summer	S10LB	Orifice	S10	11.2				
30 minute summer	S11	11.005	S12	134.1	1.904	1.896	0.8959	
30 minute summer	S11L	Orifice	S11	10.7				
30 minute summer	S12	1.007	S15	349.5	2.446	0.940	3.4042	
30 minute summer	S13	19.000	S14	28.0	0.911	0.409	1.1703	
30 minute summer	S14	19.001	S15	51.0	1.282	1.200	0.3855	
30 minute summer	S14L	Orifice	S14	10.2				
30 minute summer	S15	1.008	S17	431.7	2.725	1.125	5.6453	
1440 minute winter	S16	21.001	S17	7.3	0.712	0.185	0.3179	
30 minute winter	S16LA	Orifice	S16	9.9				
30 minute summer	S16LB	Orifice	S16	11.6				
1440 minute winter	S17	1.009	S18	44.5	0.531	0.283	2.0406	
1440 minute winter	S18	1.010	HW1	44.5	0.519	0.278	1.0223	
1440 minute winter	HW1	Flow through pond	HW2	24.4	0.008	0.010	1177.3784	
1440 minute winter	HW2	1.011	S19	13.7	0.528	0.343	0.2561	
1440 minute winter	S19	Hydro-Brake®	HW3	4.6				392.3

•	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 1
tarrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
vvaisii	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Design Settings

Rainfall Methodology	FEH-99	Time of Entry (mins)	4.00
Return Period (years)	2	Maximum Time of Concentration (mins)	30.00
Additional Flow (%)	0	Maximum Rainfall (mm/hr)	50.0
C (1km)	-0.020	Minimum Velocity (m/s)	1.00
D1 (1km)	0.339	Connection Type	Level Soffits
D2 (1km)	0.314	Minimum Backdrop Height (m)	0.200
D3 (1km)	0.183	Preferred Cover Depth (m)	1.200
E (1km)	0.304	Include Intermediate Ground	\checkmark
F (1km)	2.509	Enforce best practice design rules	\checkmark
CV	0.750		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
	()	((m)	()	(,	(,	(,
S1LA	0.064	4.00	19.899	600	508578.855	320748,136	1.050
S1	0.034	4.00	19.966	1200	508589.755	320738.884	1.726
S1LB	0.030	4.00	19.485	600	508603.348	320726.906	1.000
S2	0.000		19.856	1200	508600.609	320751.670	1.715
S2L	0.016	4.00	19.895	600	508597.464	320754.339	1.266
S3	0.029	4.00	19.801	1200	508613.156	320766.452	1.849
S3LA	0.013	4.00	19.820	600	508606.988	320765.419	1.092
S3LB	0.056	4.00	19.839	600	508609.904	320769.213	1.310
S3LC	0.008	4.00	19.759	600	508616.075	320759.541	1.050
S4	0.000		19.782	1200	508621.089	320775.797	1.880
S4L	0.013	4.00	19.659	600	508626.212	320771.449	1.050
S5	0.013	4.00	19.344	1200	508631.300	320787.827	1.506
S5LA	0.021	4.00	19.514	600	508623.891	320785.565	1.050
S5LB	0.017	4.00	19.338	600	508636.467	320783.441	1.050
S6	0.038	4.00	19.157	1200	508635.584	320792.874	1.346
S6L	0.014	4.00	19.167	600	508632.075	320795.361	1.050
S7	0.035	4.00	19.029	1200	508585.685	320864.527	1.808
S7L	0.083	4.00	19.306	600	508576.586	320851.532	1.050
S8	0.026	4.00	18.640	1200	508610.146	320847.400	1.595
S8LA	0.017	4.00	18.563	600	508610.273	320855.272	1.050
S8LB	0.015	4.00	18.698	600	508607.542	320843.681	1.124
S9	0.000		18.484	1200	508622.671	320838.630	1.529
S9LA	0.016	4.00	18.399	600	508621.256	320847.544	1.050
S9LB	0.020	4.00	18.590	600	508620.062	320834.904	1.105
S10	0.028	4.00	18.361	1200	508636.401	320829.016	1.579
S10LA	0.020	4.00	18.276	600	508632.732	320839.531	1.050
S10LB	0.022	4.00	18.507	600	508633.812	320825.319	1.124
S11	0.004	4.00	18.333	1200	508642.300	320824.886	1.581
S11L	0.018	4.00	18.146	600	508645.996	320830.164	1.050
S12	0.025	4.00	18.276	1500	508652.722	320817.588	1.726
S13	0.029	4.00	18.487	1200	508700.125	320781.318	1.425
S14	0.017	4.00	18.019	1200	508679.241	320802.047	1.463
S14L	0.027	4.00	18.050	600	508676.227	320799.010	1.050
S15	0.032	4.00	17.916	1500	508672.361	320808.875	1.650
S16	0.008	4.00	17.301	1200	508684.201	320849.001	1.264
S16LA	0.120	4.00	17.169	600	508682.952	320863.717	0.909
S16LB	0.033	4.00	17.357	600	508679.002	320848.913	1.050
517	0.020	4.00	17.328	1500	508686.810	320841.444	1.563
S18	0.000		17.180	1500	508699.687	320841.201	1.446

•	Farrow	Walsh (Consulting	Ltd	File: FW2	053 Drain	age Strat	tegy Sur(r Page 2				
tarrow	62 High	cross St	reet		Network:	Storm Sti	rategy		Ceda	Cedar Drive, Bourne			
walsh	Leiceste	er			DM				Linco	Inshire PE	10 9SQ		
	LE1 4NN	١			Decembe	r 2021			Drain	Drainage Strategy Surcharged Outfa			
					Nod	<u>es</u>							
	Na	me /	Area To (ha) (mi	f E Cover ns) Level	[.] Diameter Easting (mm) (m)		asting (m)	Northing (m)		Depth (m)			
	HW/1 0.000		(m)	1 12	00 508	705 770	320843	3 350	1 286				
	HV	V2 0	000 4	00 16 72	- 12 0 12	00 508	737 158	32086	706	1.200			
	S10	9 0 9 0		16 72	0 12	00 508	741 900	32086	5.062	1.002			
	HV	V3 0	000	16 58	1 12	00 508	750 200	32000	5 859	0.981			
				20.000		500	50.200	02007		0.501			
Links													
Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain		
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)		
1.000	S1LA	S1	14.297	0.600	18.849	18.315	0.534	26.8	150	4.12	50.0		
1.001	S1	S2	16.772	0.600	18.240	18.141	0.099	169.4	225	4.59	50.0		
2.000	S1LB	S1	18.117	0.600	18.485	18.315	0.170	106.6	150	4.31	50.0		
1.002	S2	S3	19.390	0.600	18.141	18.027	0.114	170.1	225	4.91	50.0		
3.000	S2L	S2	4.124	0.600	18.629	18.216	0.413	10.0	150	4.02	50.0		
1.003	S3	S4	12.258	0.600	17.952	17.902	0.050	245.2	300	5.12	50.0		
4.000	S3LA	S3	6.254	0.600	18.728	18.102	0.626	10.0	150	4.03	50.0		
5.000	S3LB	S3	4.266	0.600	18.529	18.102	0.427	10.0	150	4.02	50.0		
6.000	S3LC	S3	7.502	0.600	18.709	18.102	0.607	12.4	150	4.04	50.0		
1.004	S4	S5	15.779	0.600	17.902	17.838	0.064	246.5	300	5.38	50.0		
7.000	S4L	S4	6.720	0.600	18.609	18.052	0.557	12.1	150	4.04	50.0		
1.005	S5	S6	6.621	0.600	17.838	17.811	0.027	245.2	300	5.49	50.0		
8.000	S5LA	S5	7.746	0.600	18.464	17.988	0.476	16.3	150	4.05	50.0		
9.000	S5LB	S5	6.778	0.600	18.288	17.988	0.300	22.6	150	4.05	50.0		
1.006	S6	S12	30.074	0.600	17.811	16.700	1.111	27.1	300	5.66	50.0		
10.000	S6L	S6	4.301	0.600	18.117	17.961	0.156	27.6	150	4.04	50.0		

10.000	20L	20	4.	301	0.600	10.11	/ 1/.90	DT 0.15	0 27.0	120	4.04	50.0
11.001	S7	S8	29.	861	0.600	17.22	1 17.04	45 0.17	6 169.7	225	4.60	50.0
11.000	S7L	S7	15.	865	0.600	18.25	6 17.29	96 0.96	0 16.5	150	4.11	50.0
11.002	S8	S9	15.	290	0.600	17.04	5 16.95	55 <u>0.09</u>	0 169.9	225	4.86	50.0
			Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add		
				(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow		
							(m)	(m)		(I/s)		
			1.000	1.953	34.5	8.7	0.900	1.501	0.064	0.0		
			1.001	1.001	39.8	17.3	1.501	1.490	0.128	0.0		
			2.000	0.973	17.2	4.1	0.850	1.501	0.030	0.0		
			1.002	0.999	39.7	19.5	1.490	1.549	0.144	0.0		
			3.000	3.207	56.7	2.2	1.116	1.490	0.016	0.0		
			1.003	0.999	70.6	33.9	1.549	1.580	0.250	0.0		
			4.000	3.206	56.7	1.8	0.942	1.549	0.013	0.0		
			5.000	3.206	56.7	7.6	1.160	1.549	0.056	0.0		
			6.000	2.881	50.9	1.1	0.900	1.549	0.008	0.0		
			1.004	0.997	70.4	35.6	1.580	1.206	0.263	0.0		
			7.000	2.916	51.5	1.8	0.900	1.580	0.013	0.0		
			1.005	0.999	70.6	42.6	1.206	1.046	0.314	0.0		
			8.000	2.509	44.3	2.8	0.900	1.206	0.021	0.0		
			9.000	2.127	37.6	2.3	0.900	1.206	0.017	0.0		
			1.006	3.033	214.4	49.6	1.046	1.276	0.366	0.0		
			10.000	1.925	34.0	1.9	0.900	1.046	0.014	0.0		
			11.001	1.001	39.8	16.0	1.583	1.370	0.118	0.0		

39.8 23.9 1.370 1.304 0.176

0.0

0.0

11.000 2.490 44.0 11.2 0.900 1.583 0.083

11.002 1.000

		Farrow V	Walsh Co	onsulting L	td	File: FW20)53 Draina	age Strat	egy Sur(Page 3	Page 3			
arr	ow	62 Higho	cross Stre	eet		Network:	Storm Str	ategy		Cedar	Drive, Bo	urne		
val	sh	Leiceste	r			DM				Lincol	nshire PE	10 9SQ		
		LE1 4NN				December	r 2021			Drainage Strategy Surcharged Outfa			l Outfa	
						<u>Link</u>	<u>(S</u>							
	Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain		
		Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)		
	12.000	S8LA	S8	7.873	0.600	17.513	17.120	0.393	20.0	150	4.06	50.0		
	13.000	S8LB	S8	4.540	0.600	17.574	17.120	0.454	10.0	150	4.02	50.0		
	11.003	S9	S10	16.761	0.600	16.955	16.857	0.098	171.0	225	5.14	50.0		
	14.000	S9LA	S9	9.025	0.600	17.349	17.030	0.319	28.3	150	4.08	50.0		
	15.000	S9LB	S9	4.548	0.600	17.485	17.030	0.455	10.0	150	4.02	50.0		
	11.004	S10	S11	7.201	0.600	16.782	16.752	0.030	240.0	300	5.26	50.0		
	16.000	S10LA	S10	11.137	0.600	17.226	16.932	0.294	37.9	150	4.11	50.0		
	17.000	S10LB	S10	4.513	0.600	17.383	16.932	0.451	10.0	150	4.02	50.0		
	11.005	S11	S12	12.723	0.600	16.752	16.700	0.052	244.7	300	5.47	50.0		
	18.000	S11L	S11	6.444	0.600	17.096	16.902	0.194	33.2	150	4.06	50.0		
	1.007	S12	S15	21.485	0.600	16.550	16.266	0.284	75.7	450	5.81	50.0		
	19.000	S13	S14	29.425	0.600	17.062	16.556	0.506	58.2	225	4.29	50.0		
	19.001	S14	S15	9.694	0.600	16.556	16.491	0.065	149.1	225	4.44	50.0		
	20.000	S14L	S14	4.278	0.600	17.000	16.631	0.369	11.6	150	4.02	50.0		
	1.008	S15	S17	35.630	0.600	16.266	15.765	0.501	71.1	450	6.06	50.0		
	21.000	S16LA	S16	14.769	0.600	16.260	16.112	0.148	99.8	150	4.24	50.0		
	21.001	S16	S17	7.994	0.600	16.037	15.990	0.047	170.1	225	4.38	50.0		
	22.000	S16LB	S16	5.200	0.600	16.307	16.112	0.195	26.7	150	4.04	50.0		
	1.009	S17	S18	12.879	0.600	15.765	15.734	0.031	415.5	450	6.27	50.0		
	1.010	S18	HW1	6.452	0.600	15.734	15.718	0.016	403.3	450	6.38	50.0		
	1.011	HW2	S19	6.440	0.600	15.718	15.680	0.038	169.5	225	4.11	50.0		
	1.012	S19	HW3	13.618	0.600	15.680	15.600	0.080	170.2	225	4.33	50.0		

f

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
				(m)	(m)		(I/s)
12.000	2.260	39.9	2.3	0.900	1.370	0.017	0.0
13.000	3.204	56.6	2.0	0.974	1.370	0.015	0.0
11.003	0.997	39.6	28.7	1.304	1.279	0.212	0.0
14.000	1.900	33.6	2.2	0.900	1.304	0.016	0.0
15.000	3.205	56.6	2.7	0.955	1.304	0.020	0.0
11.004	1.010	71.4	38.2	1.279	1.281	0.282	0.0
16.000	1.640	29.0	2.7	0.900	1.279	0.020	0.0
17.000	3.203	56.6	3.0	0.974	1.279	0.022	0.0
11.005	1.000	70.7	41.2	1.281	1.276	0.304	0.0
18.000	1.752	31.0	2.4	0.900	1.281	0.018	0.0
1.007	2.339	372.0	94.2	1.276	1.200	0.695	0.0
19.000	1.718	68.3	3.9	1.200	1.238	0.029	0.0
19.001	1.068	42.5	9.9	1.238	1.200	0.073	0.0
20.000	2.975	52.6	3.7	0.900	1.238	0.027	0.0
1.008	2.413	383.7	108.4	1.200	1.113	0.800	0.0
21.000	1.006	17.8	16.3	0.759	1.039	0.120	0.0
21.001	0.999	39.7	21.8	1.039	1.113	0.161	0.0
22.000	1.957	34.6	4.5	0.900	1.039	0.033	0.0
1.009	0.991	157.6	133.0	1.113	0.996	0.981	0.0
1.010	1.006	160.0	133.0	0.996	0.836	0.981	0.0
1.011	1.001	39.8	0.0	0.777	0.815	0.000	0.0
1.012	0.999	39.7	0.0	0.815	0.756	0.000	0.0

arrow valsh	Farr 62 H Leic LE1	ow Walsh Highcross S ester 4NN	Consulti Street	ng Ltd	File: Netw DM Dece	FW2053 vork: Sto mber 20	3 Draina orm Stra 021	ge Strateg itegy	y Sur(Page 4 Cedar Drive Lincolnshir Drainage St	e, Bourne e PE10 9SQ trategy Surch	arged Outfa
					<u>Pipel</u>	ine Sche	edule					
Li	ink	Length	Slope	Dia L	ink US (CL US	sil l	JS Depth	DS CL	DS IL	DS Depth	
1.0		(m)	(1:X)	(mm) T	ype (m) (I	m)	(m)	(m)	(m)	(m)	
1.0	000	14.297	26.8	150 1	19.8	99 18. cc 19	.849	0.900	10.966	10 1 41	1.501	
1.0	001	10.772	109.4	150 1	19.9	00 <u>10</u> . 25 12	.240 185	0.850	19.000	10.141	1.490	
2.0	00	10.117	170.1	225 1	19.4	55 18.	1/1	1 /190	19.900	18 027	1.501	
3.0	002	4 1 2 4	10.0	150 1	19.8	95 18	629	1 1 1 1 6	19 856	18 216	1 490	
1.0	003	12.258	245.2	300 1	19.8	01 17.	.952	1.549	19.782	17.902	1.580	
4.0	000	6.254	10.0	150 1	19.8	20 18.	.728	0.942	19.801	18.102	1.549	
5.0	000	4.266	10.0	150 1	19.8	39 18.	.529	1.160	19.801	18.102	1.549	
6.0	000	7.502	12.4	150 1	19.7	59 18.	.709	0.900	19.801	18.102	1.549	
1.0	004	15.779	246.5	300 1	19.7	82 17.	.902	1.580	19.344	17.838	1.206	
7.0	000	6.720	12.1	150 1	19.6	59 18.	.609	0.900	19.782	18.052	1.580	
1.0	005	6.621	245.2	300 1	19.3	44 17.	.838	1.206	19.157	17.811	1.046	
8.0	000	7.746	16.3	150 1	19.5	14 18.	.464	0.900	19.344	17.988	1.206	
9.0	000	6.778	22.6	150 <u>1</u>	19.3	38 18.	.288	0.900	19.344	17.988	1.206	
1.0	006	30.074	27.1	300 1	19.1	57 17.	.811	1.046	18.276	6 16.700	1.276	
10	.000	4.301	27.6	150 <u>1</u>	19.1	67 18.	.117	0.900	19.157	17.961	1.046	
11.	.001	29.861	169.7	225 1	19.0	29 17.	.221	1.583	18.640	17.045	1.370	
11.	.000	15.865	16.5	150 1	19.3	06 18.	.256	0.900	19.029	17.296	1.583	
11.	.002	15.290	169.9	225 1	18.6	40 17.	.045	1.370	18.484	16.955	1.304	
12.	.000	7.873	20.0	150 1	18.5	63 17.	.513	0.900	18.640	17.120	1.370	
13.	.000	4.540	10.0	150 1	18.6	98 17.	.574	0.974	18.640	17.120	1.370	
11.	.003	16.761	171.0	225 1	18.4	84 16.	.955	1.304	18.361	16.857	1.279	
14.	.000	9.025	28.3	150 1	18.3	99 17.	.349	0.900	18.484	17.030	1.304	
15.	.000	4.548	10.0	150 1	18.5	90 17.	.485	0.955	18.484	17.030	1.304	
11.	.004	7.201	240.0	300 1	18.3	bl 16.	.782	1.279	18.333	16.752	1.281	
		Link	US	Dia	Node	MH	DS Nodo	Dia (mm)	Node	MH		
		1 000	S1LA	600 E	Manhole	туре	s1	1200	Manho	iype ا		
		1.000	SILA S1	1200	Manhole	1	52	1200	Manho	ו שו 1 בו		
		2 000	51 511 B	600	Manhole	1	52 51	1200	Manho	le 1		
		1 002	5110	1200	Manhole	1	53	1200	Manho	le 1		
		3.000	S2L	600	Manhole	1	S2	1200	Manho	le 1		
		1.003	S3	1200	Manhole	1	S4	1200	Manho	le 1		
		4.000	S3LA	600	Manhole	1	S3	1200	Manho	le 1		
		5.000	S3LB	600	Manhole	1	S3	1200	Manho	le 1		
		6.000	S3LC	600	Manhole	1	S3	1200	Manho	le 1		
		1.004	S4	1200	Manhole	1	S5	1200	Manho	le 1		
		7.000	S4L	600	Manhole	1	S4	1200	Manho	le 1		
		1.005	S5	1200	Manhole	1	S6	1200	Manho	le 1		
		8.000	S5LA	600	Manhole	1	S5	1200	Manho	le 1		
		9.000	S5LB	600	Manhole	1	S5	1200	Manho	le 1		
		1.006	S6	1200	Manhole	1	S12	1500	Manho	le 1		
		10.00	0 S6L	600	Manhole	1	S6	1200	Manho	le 1		
		11.00	1 S7	1200	Manhole	1	S8	1200	Manho	le 1		
		11.00	0 S7L	600	Manhole	1	S7	1200	Manho	le 1		
		11.002		1200	Manhole	1	29	1200	ivianho	le 1		
		12.00	U S&LA	600	Iviannole Manhole	1	58 50	1200	Ivianho	le 1		
		11 00	U 30LB	1200	Manhola	⊥ 1	30 610	1200	Manha	10 1		
		1/ 00	0 COIV	1200 1200	Manholo	1 1	20 210	1200	Manho	ויב ב ום 1		
		15 000		600	Manhole	1	59	1200	Manho	le 1		
		11 00/	4 S10	1200	Manhole	_ 1	۶ <u>ر</u>	1200	Manho	le 1		
		11.00	. 510	1200	mannole	-	211	1200		·C 1		

								<u> </u>				
	Farrow Wals	sh Consult	ing Ltd	File: F	W2053	Draina	ge Strateg	y Sur(Page 5			
arrow	62 Highcros	s Street		Netw	ork: Sto	orm Stra	tegy		Cedar Drive	e, Bourne		
valsh	Leicester			DM					Lincolnshir	e PE10 9SQ		
	LE1 4NN			Dece	mber 20	021			Drainage St	rategy Surch	narged Outfa	
				<u>Pipeli</u>	ne Sche	<u>dule</u>						
Lin	k longth	Slone	Dia I	ink USC	'I II		S Denth			DS Denth		
LIII	(m)	(1:X)	(mm) T	vpe (m)	(r	n)	(m)	(m)	(m)	(m)		
16.0	00 11.137	37.9	150 1	18.27	76 17.	226	0.900	18.361	. 16.932	1.279		
17.0	00 4.513	10.0	150 1	18.50)7 17.	383	0.974	18.361	16.932	1.279		
11.0	05 12.723	244.7	300 1	18.33	33 16.	752	1.281	18.276	16.700	1.276		
18.0	00 6.444	33.2	150 1	18.14	16 17.	096	0.900	18.333	16.902	1.281		
1.00	7 21.485	75.7	450 1	18.27	76 16.	550	1.276	17.916	16.266	1.200		
19.0	00 29.425	58.2	225 1	18.48	37 17.	062	1.200	18.019	16.556	1.238		
19.0	01 9.694	149.1	225 1	18.01	L9 16.	556	1.238	17.916	16.491	1.200		
20.0	00 4.278	11.6	150 1	18.05	50 17.	000	0.900	18.019	16.631	1.238		
1.00	8 35.630	71.1	450 1	17.91	16 16.	266	1.200	17.328	15.765	1.113		
21.0	00 14.769	99.8	150 1	17.16	59 16.	260	0.759	17.301	16.112	1.039		
21.0	01 7.994	170.1	225 1	17.30)1 16.	037	1.039	17.328	15.990	1.113		
22.0	00 5.200	26.7	150 1	17.35	57 16.	307	0.900	17.301	16.112	1.039		
1.00	9 12.879	415.5	450 1	17.32	28 15.	765	1.113	17.180	15.734	0.996		
1.01	0 6.452	403.3	450 1	17.18	30 15.	734	0.996	17.004	15.718	0.836		
1.01	1 6.440	169.5	225 1	16.72	20 15.	718	0.777	16.720	15.680	0.815		
1.01	2 13.618	170.2	225 1	16.72	20 15.	680	0.815	16.581	15.600	0.756		
	Lin	k US	Dia	Node	MH	DS	Dia	Node	e MH			
		Nod	e (mm)	Туре	Туре	Node	(mm)	Туре	Туре			
	16.0	00 S10L	A 600	Manhole	1	S10	1200	Manho	ole 1			
	17.0	00 S10L	B 600	Manhole	1	S10	1200	Manho	ole 1			
	11.0	05 S11	1200	Manhole	1	S12	1500	Manho	ole 1			
	18.0	00 S11L	600	Manhole	1	S11	1200	Manho	ole 1			
	1.00	7 S12	1500	Manhole	1	S15	1500	Manho	ole 1			
	19.0	00 S13	1200	Manhole	1	S14	1200	Manho	ole 1			
	19.0	01 S14	1200	Manhole	1	S15	1500	Manho	ole 1			
	20.0	00 S14L	600	Manhole	1	S14	1200	Manho	ole 1			
	1.00	8 S15	1500	Manhole	1	S17	1500	Manho	ole 1			
	21.0	00 S16L	A 600	Manhole	1	S16	1200	Manho	ole 1			
	21.0	01 S16	1200	Manhole	1	S17	1500	Manho	ole 1			
	22.0	00 S16L	B 600	Manhole	1	S16	1200	Manho	ole 1			
	1.00	9 S17	1500	Manhole	1	S18	1500	Manho	ole 1			
	1.01	0 S18	1500	Manhole	1	HW1	1200	Manho	ole 1			
	1.01	1 HW2	1200	Manhole	1	S19	1200	Manho	ole 1			
	1.01	2 S19	1200	Manhole	1	HW3	1200	Manho	ole 1			

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
S1LA	508578.855	320748.136	19.899	1.050	600					
						$Q_{\underline{y}}$				
						U	0	1.000	18.849	150
S1	508589.755	320738.884	19.966	1.726	1200	٩_ ٢	1	2.000	18.315	150
							2	1.000	18.315	150
						1	0	1.001	18.240	225
S1LB	508603.348	320726.906	19.485	1.000	600	٩				
							0	2.000	18.485	150

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 6
arrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
valsh	Leicester	DM	Lincolnshire PE10 9SQ
Valsti	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	s	Link	IL (m)	Dia (mm)
S2	508600.609	320751.670	19.856	1.715	1200	. 0	1	3.000	18.216	150
							2	1.001	18.141	225
<u></u>	500507 464	220754 220	10.005	1 200	600	2	0	1.002	18.141	225
SZL	508597.464	320754.339	19.895	1.266	600	\frown				
						\square				
							0	3.000	18.629	150
S3	508613.156	320766.452	19.801	1.849	1200	2 7	1	6.000	18.102	150
							2	5.000	18.102	150
						3-	3	4.000	18.102	150
						4 1 1	4	1.002	18.027	225
C 21 A		220765 410	10.920	1 002	600		0	1.003	17.952	300
JSLA	506000.988	520705.419	19.820	1.092	600	\frown				
						(→ >0				
							0	4.000	18.728	150
S3LB	508609.904	320769.213	19.839	1.310	600					
						\bigcirc				
						\checkmark	~	F 000	10 5 20	150
5310	508616 075	320759 5/1	10 750	1 050	600	0	0	5.000	18.529	150
JJLC	500010.075	520755.541	15.755	1.050	000	Å				
						\bigcirc				
							0	6.000	18.709	150
S4	508621.089	320775.797	19.782	1.880	1200	7 ⁰	1	7.000	18.052	150
						\bigotimes	2	1.003	17.902	300
						2 1	0	1 004	17 902	300
S4L	508626.212	320771.449	19.659	1.050	600		0	1.004	17.502	500
						°~				
						\mathbf{O}				
							0	7.000	18.609	150
S5	508631.300	320787.827	19.344	1.506	1200	r	1	9.000	17.988	150
						R	2	8.000	17.988	150
						2 2 1	3	1.004	17.838	300
S51 A	508623 891	320785 565	19 51/	1 050	600	-	0	1.005	17.838	300
JJLA	500025.051	520785.585	19.914	1.050	000	→ 0				
						G				
							0	8.000	18.464	150
S5LB	508636.467	320783.441	19.338	1.050	600	7 ⁰				
						\smile	0	9.000	18.288	150
S6	508635.584	320792.874	19.157	1.346	1200	0	1	10.000	17.961	150
						1	2	1.005	17.811	300
						X				
	F00000 075	220705 204	10 4 2 7	1.050	600	2	0	1.006	17.811	300
SOL	508632.075	320795.361	19.167	1.050	600					
						(\mathcal{A})				
						0 [*] 0	0	10.000	18.117	150
					I					

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 7
arrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
valsh	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectio	ns	Link	IL (m)	Dia (mm)
S7	508585.685	320864.527	19.029	1.808	1200		1	11.000	17.296	150
						\bigcirc				
						1	0	11.001	17.221	225
S7L	508576.586	320851.532	19.306	1.050	600	Å				
						\bigcirc				
						Ŭ	0	11 000	18 256	150
58	508610 146	320847 400	18 640	1 595	1200	2	1	13 000	17 120	150
50	500010.140	520047.400	10.040	1.555	1200	3	2	12.000	17.120	150
						\otimes	3	11.001	17.045	225
						1 0	0	11.002	17.045	225
S8LA	508610.273	320855.272	18.563	1.050	600					
						\bigcirc				
						φ				
						0	0	12.000	17.513	150
S8LB	508607.542	320843.681	18.698	1.124	600	Å				
						\square				
							0	12.000	47 574	450
<u>co</u>	509622 671	220020 620	10 /0/	1 5 2 0	1200	2	1	15.000	17.574	150
39	508022.071	520858.050	10.404	1.529	1200	3	2	14 000	17.030	150
						\bigotimes	2	11 002	16 955	225
						1 10	0	11.003	16.955	225
S9LA	508621.256	320847.544	18.399	1.050	600				20.000	
						\bigcirc				
						Ψ				
						v o	0	14.000	17.349	150
S9LB	508620.062	320834.904	18.590	1.105	600	Å				
						K				
							_			. – –
<u> </u>	500626 404	220020 046	10.201	4 5 7 0	1200	-	0	15.000	17.485	150
510	508636.401	320829.016	18.361	1.579	1200	3	1	16.000	16.932	150
						\otimes	2	11 002	16 857	225
							0	11.003	16 782	300
S10LA	508632 732	320839 531	18 276	1 050	600		0	11.004	10.782	
0101/	500002.752	020000.001	10.270	1.000		\frown				
						φ				
						v o	0	16.000	17.226	150
S10LB	508633.812	320825.319	18.507	1.124	600	0				
						K				
						\cup				
							0	17.000	17.383	150
S11	508642.300	320824.886	18.333	1.581	1200	2 1	1	18.000	16.902	150
						$ $ \boxtimes	2	11.004	16.752	300
						\sim $^{\prime}$	0	11.005	16 750	200
\$111	508645 006	320820 164	18 116	1 050	600		U	11.005	10.752	300
JTTL	500045.550	520050.104	10.140	1.000	000	\frown				
						٥K	0	18.000	17.096	150
					1		•			100

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 8
arrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	IS	Link	IL (m)	Dia (mm)
S12	508652.722	320817.588	18.276	1.726	1500		1	11.005	16.700	300
							2	1.006	16.700	300
						2′	0	1.007	16.550	450
S13	508700.125	320781.318	18.487	1.425	1200	0	-			
							0	19.000	17.062	225
S14	508679.241	320802.047	18.019	1.463	1200	°	1 2	20.000 19.000	16.631 16.556	150 225
						1 2	0	19.001	16.556	225
S14L	508676.227	320799.010	18.050	1.050	600	()				
							0	20.000	17.000	150
S15	508672.361	320808.875	17.916	1.650	1500	Å	1	19.001	16.491	225
							2	1.007	16.266	450
<u></u>	500004 204	220040.004	47.204	1 264	1200		0	1.008	16.266	450
516	508684.201	320849.001	17.301	1.264	1200	1	1 2	22.000	16.112 16.112	150 150
						à	0	21.001	16.037	225
S16LA	508682.952	320863.717	17.169	0.909	600	Q	0	21.000	16 260	150
S16LB	508679.002	320848.913	17.357	1.050	600	Ū →O	0	21.000	10.200	150
							0	22.000	16.307	150
S17	508686.810	320841.444	17.328	1.563	1500		1 2	21.001 1.008	15.990 15.765	225 450
						2	0	1.009	15.765	450
S18	508699.687	320841.201	17.180	1.446	1500	1	1	1.009	15.734	450
						<u> </u>	0	1 010	15 734	450
HW1	508705.770	320843.350	17.004	1.286	1200	\bigcirc	1	1.010	15.718	450
						1-1-1-				
HW2	508737.158	320860.706	16.720	1.002	1200	() *				
64.6	500744 000	220065 255	46 706	4 6 4 6	4222		0	1.011	15.718	225
519	508741.900	320865.062	16.720	1.040	1200		1	1.011	15.680	225
						1	0	1.012	15.680	225

farrow walsh	Farrow Walsh 62 Highcross S Leicester LE1 4NN	Consulting Ltd Street		File: FW2 Network: DM Decembe	053 Dra Storm S er 2021	inage Stra Strategy	tegy Sur(Page 9 Cedar Lincolr Draina	Drive, Bou Ishire PE10 ge Strategy	rne) 9SQ y Surcharged Outfa
				Manhole S	Schedul	<u>e</u>				
Node HW3	e Easting (m) 508750.200	Northing (m) 320875.859	CL (m) 16.582	Depth (m) 1 0.981	Dia (mm) 1200	Conne	ections 1	Link 1.012	IL (m) 15.600	Dia (mm) 225
				<u>Simulation</u>	Setting	<u>{S</u>				
Rainfa	ll Methodology C (1km) D1 (1km) D2 (1km) D3 (1km) E (1km) 30 60	FEH-99 -0.020 0.339 0.314 0.183 0.304 120 180	S Drain Do) 24(F (Summ Wint Analysis S kip Steady own Time (Storm Du 360	(1km) er CV er CV speed State mins) urations 480	2.509 0.950 0.950 Detailed x 240 0 600	Additi Che Cheo 720	onal Sto eck Disch ck Disch 960	orage (m³/h narge Rate 100 year (l, narge Volun 1440	na) 0.0 (s) √ /s) 4.6 ne x
	Re	oturn Period	Climate	Change	مطنtio	nal Δrea	Additiona	al Flow		
		(years) 2 30 100	(CC	%) 0 0 40	(A	%) 10 10 10	(Q %	6) 0 0 0		
			<u>Pre-de</u>	velopment	<u>: Discha</u>	<u>rge Rate</u>				
	C Positively	Site Mak Greenfield Met Drained Area SAAR (r BFII BFII Rej	eup Gr hod FE (ha) 1.4 nm) 59 Host 1 Host 0.3 gion 1	reenfield :H 805 94 379	QBa	r/QMed co Growth	onversion f Factor 100 Bettermen O Q 100 yea	factor) year nt (%) QMed QBar r (l/s)	1.111 2.48 0 4.6 5.1 12.6	
		N	lode S19	Online Hy	dro-Bra	ke® Contro	<u>ol</u>			
Reț	Fi blaces Downstro Invert I Design D Design F	lap Valve x eam Link x Level (m) 15. epth (m) 1.1 Flow (l/s) 4.6	680 00	P Min Outle Min Node	O Sump A Product et Diam Diamet	bjective wailable Number eter (m) er (mm)	(HE) Mini √ CTL-SHE-0 0.150 1200	mise up 0100-46	stream sto 00-1100-4	orage 600
			<u>Node S</u>	1LA Online	e Orifice	<u>Control</u>				
	Replaces Down	Flap Valve stream Link	x In √	vert Level Diameter	(m) 18 (m) 0.	3.849 075	Discharge	Coeffic	ient 0.60	00
	Replaces Down	Flap Valve stream Link	<u>Node S</u> x In √	o 1LB Online Ivert Level Diameter	e Orifice (m) 18 (m) 0.	2 Control 3.485 075	Discharge	Coeffic	ient 0.60	00

farrow	Farrow Walsh Consulting Li 62 Highcross Street Leicester	d	File: FW2053 I Network: Stor DM	Drainage Str m Strategy	ategy Sur(Page 10 Cedar Drive, Bourne Lincolnshire PE10 9SO				
waisii	LE1 4NN		December 202	21		Drainage St	rategy Surcharged Outfa			
		<u>No</u>	de S2L Online Orifi	<u>ice Control</u>						
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	18.629 0.075	Discharge	Coefficient	0.600			
		Nod	e S3LA Online Ori	fice Control						
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	18.728 0.075	Discharge	Coefficient	0.600			
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	18.529 0.075	Discharge	Coefficient	0.600			
		Nod	le S3LC Online Ori	fice Control						
				40.700	Disaharan	Co. officient	0.000			
	Replaces Downstream Link	× √	Diameter (m)	0.075	Discharge	Coemclent	0.600			
		No	de S4L Online Orifi	<u>ice Control</u>						
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	18.609 0.075	Discharge	Coefficient	0.600			
	Flap Valve Replaces Downstream Link	x	Invert Level (m) Diameter (m)	18.464 0.075	Discharge	Coefficient	0.600			
		Nod	e S5LB Online Ori	fice Control						
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	18.288 0.075	Discharge	Coefficient	0.600			
		No	de S6L Online Orifi	ice Control						
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	18.117 0.075	Discharge	Coefficient	0.600			
		No	de S7L Online Orifi	ice Control						
				40.250	D : 1	с ((; · · ·	0.000			
	Flap Valve Replaces Downstream Link	× √	Diameter (m)	18.256 0.075	Discharge	Coemcient	0.600			
		<u>Nod</u>	e S8LA Online Ori	fice Control						
	Flap Valve	x	Invert Level (m)	17.513	Discharge	Coefficient	0.600			
	Replaces Downstream Link	\checkmark	Diameter (m)	0.075						
		<u>Nod</u>	e S8LB Online Ori	fice Control						
	Flap Valve Replaces Downstream Link	x √	Invert Level (m) Diameter (m)	17.574 0.075	Discharge	Coefficient	0.600			

farrow walsh	Farrow Walsh C 62 Highcross Str Leicester	onsulting L eet	.td	File: FW Networl DM	2053 Draiı <: Storm St	nage Strat trategy	Page 11 Cedar Drive Lincolnshire	Page 11 Cedar Drive, Bourne incolnshire PE10 9SQ		
	I LE1 4NN			Decemb	er 2021			Drainage St	rategy Sur	charged Outfa
			<u>Node</u>	e S9LA Onlir	ne Orifice	<u>Control</u>				
	I Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 17. r (m) 0.0	.349 175	Discharge	Coefficient	0.600	
			Node	e S9LB Onlir	ne Orifice	<u>Control</u>				
	I Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 17. r (m) 0.0	485 175	Discharge	Coefficient	0.600	
			<u>Node</u>	<u>S10LA Onli</u>	<u>ne Orifice</u>	<u>Control</u>				
	I Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 17. r (m) 0.0	.226 75	Discharge	Coefficient	0.600	
			<u>Node</u>	<u>S10LB Onli</u>	<u>ne Orifice</u>	<u>Control</u>				
	I Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 17. r (m) 0.0	383 175	Discharge	Coefficient	0.600	
			Node	e S11L Onlir	ne Orifice	<u>Control</u>				
	Replaces Downst	lap Valve ream Link	x √	Invert Leve Diameter	l (m) 17. r (m) 0.0	.096 175	Discharge	Coefficient	0.600	
			Node	e S14L Onlir	ne Orifice (<u>Control</u>				
	I Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 17. r (m) 0.0	.000 75	Discharge	Coefficient	0.600	
			<u>Node</u>	S16LA Onli	<u>ne Orifice</u>	<u>Control</u>				
	I Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 16. r (m) 0.0	260 75	Discharge	Coefficient	0.600	
			<u>Node</u>	<u>S16LB Onli</u>	<u>ne Orifice</u>	<u>Control</u>				
	ا Replaces Downst	-lap Valve ream Link	x √	Invert Leve Diameter	l (m) 16. r (m) 0.0	307 75	Discharge	Coefficient	0.600	
		Nod	le HW2 F	low throug	h Pond Sto	orage Stru	<u>icture</u>			
Base Inf Co Side Inf Co	oefficient (m/hr) oefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Time	Invert to half em	Porosity Level (m) pty (mins)	1.00 15.718	Mair Mair	n Channel Le n Channel Slo Main Cl	ngth (m) ope (1:X) nannel n	35.867 1000.0 0.400
				Ini HY	l ets W1					
		Depth (m) 0.000	Area (m²) 1021.0	Inf Area (m²) 0.0	Depth (m) 1.000	Area (m²) 1389.1	Inf Area (m²) 0.0	a)		

farrow	Farrow Walsh Consult 62 Highcross Street Leicester	ing Ltd	File: FW2053 Drainage Str Network: Storm Strategy	ategy Sur(Page 12 Cedar Drive, Bou Lincolnshire PE1	age 12 Cedar Drive, Bourne incolnshire PE10 9SO	
waish	LE1 4NN		December 2021		Drainage Strateg	gy Surcharged Outfa	
		<u>Node Si</u>	<u>1LA Carpark Storage Structu</u>	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.419	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	37	Depth (m)	0.350	
	Safety Factor	2.0	Width (m)	21.300	Inf Depth (m)	0.500	
	Porosity	0.30	Length (m)	21.300			
		<u>Node S</u>	2L Carpark Storage Structur	<u>e</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.540	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	3	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	9.600	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	9.600			
		Node S	3LA Carpark Storage Structu	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.465	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	2	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	6.400	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	6.400			
		Node S	5LA Carpark Storage Structu	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.159	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	9	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	8.800	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	8.800			
		<u>Node S</u>	66L Carpark Storage Structur	<u>e</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	18.812	Slope (1:X)	80.0	
Side	Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	3	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	6.900	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	6.900			
		Node S	8LA Carpark Storage Structu	<u>re</u>			
Base	Inf Coefficient (m/hr)	0.0000	Invert Level (m)	17,933	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	9	Depth (m)	0.500	
	Safety Factor	2.0	Width (m)	7.200	Inf Depth (m)	0.500	
	Porosity	0.30	Length (m)	7.200			
		Node S	9LA Carpark Storage Structu	<u>re</u>			
Base	Inf Coefficient (m/hr)	0 00000	Invert Level (m)	18 044	Slone (1·X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	7	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	6.700	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	6.700			
		<u>Node S1</u>	<u>OLA Carpark Storage Structu</u>	<u>ire</u>			
Rase	Inf Coefficient (m/br)	0 00000	Invert Level (m)	17 921	Slope (1·X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	8	Depth (m)	0.225	
5.00	Safety Factor	2.0	Width (m)	14.200	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	14.200	-1/		

•	Farrow Walsh Consult	ing Ltd	File: FW2053 Drainage Str	ategy Sur(Page 13		
farrow	62 Highcross Street	-	Network: Storm Strategy		Cedar Drive, Bo	urne	
walch	Leicester		DM		Lincolnshire PE1	LO 9SQ	
vvaisii	LE1 4NN		December 2021		Drainage Strate	gy Surcharged Outfa	
	1						
		<u>Node s</u>	511L Carpark Storage Structu	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	17.791	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	8	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	7.700	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	7.700			
		<u>Node s</u>	514L Carpark Storage Structu	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	17.570	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	12	Depth (m)	0.350	
	Safety Factor	2.0	Width (m)	10.900	Inf Depth (m)	0.350	
	Porosity	0.30	Length (m)	10.900		0.000	
		Node S	16LA Carpark Storage Structu	ire			
				_			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	16.539	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	79	Depth (m)	0.500	
	Safety Factor	2.0	Width (m)	25.100	Inf Depth (m)	0.500	
	Porosity	0.30	Length (m)	25.100			
		Node S	S1LB Carpark Storage Structu	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.005	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	15	Depth (m)	0.350	
	Safety Factor	2.0	Width (m)	12.600	Inf Depth (m)	0.350	
	Porosity	0.30	Length (m)	12.600			
		<u>Node s</u>	31B Carpark Storage Structu	<u>re</u>			
Bas	e Inf Coefficient (m/hr)	0 00000	Invert Level (m)	19/18/	Slone (1·X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	19.404 28	Denth (m)	0.225	
5100	Safoty Factor	2.0	Width (m)	10 700	Inf Donth (m)	0.225	
	Porosity	0.30	Length (m)	19.700	ini Deptii (iii)	0.225	
		Node	S3LC Carpark Storage Structu	re			
			p=				
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	19.404	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	0	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	8.900	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	8.900			
		Node S	SSLB Carpark Storage Structu	<u>re</u>			
Base	e Inf Coefficient (m/hr)	0.00000	Invert Level (m)	18.983	Slope (1:X)	80.0	
Side	e Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	5	Depth (m)	0.225	
	Safety Factor	2.0	Width (m)	9.000	Inf Depth (m)	0.225	
	Porosity	0.30	Length (m)	9.000			
		<u>Node</u>	S7L Carpark Storage Structur	<u>e</u>			
Raci	e Inf Coefficient (m/br)	0 00000	Invert Level (m)	18 766	Slone (1·X)	80.0	
C:40	a Inf Coefficient (III/III)	0.00000	Time to half omnty (mins)	16.700	Donth (m)	0.0	
5100		0.00000	Time to nail empty (mins)	40 20 500	Depth (m)	0.410	
	Satety Factor	2.0	width (m)	20.500	inf Depth (m)	0.410	
	Porosity	0.30	Length (m)	20.500			

farrow walsh	Farrow Walsh Consult 62 Highcross Street Leicester	ing Ltd	File: FW2053 Drainage Str Network: Storm Strategy DM	rategy Sur(Page 14 Cedar Drive, Bourne Lincolnshire PE10 9SQ Drainage Strategy Surcharged Outfa						
		Nodo S9	P B Carpark Storage Structu		Drainage Strates	gy Surcharged Outla					
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Invert Level (m) Time to half empty (mins) Width (m)	18.168 5 6 900	Slope (1:X) Depth (m)	80.0 0.400 0.400					
	Porosity	0.30	Length (m)	6.900	ini Deptii (iii)	0.400					
Node S9LB Carpark Storage Structure											
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	18.235 8 9.800 9.800	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225					
		Node S1	OLB Carpark Storage Structu	<u>ire</u>							
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	18.152 8 9.700 9.700	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225					
Node S16LB Carpark Storage Structure											
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	16.877 17 9.400 9.400	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.350 0.350					
		<u>Node S</u>	4L Carpark Storage Structur	<u>e</u>							
Base Side	e Inf Coefficient (m/hr) e Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	19.304 3 6.300 6.300	Slope (1:X) Depth (m) Inf Depth (m)	80.0 0.225 0.225					

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 15
row	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
lch	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 99.79%

far Wa

Node Event	US Node	Peak	Level	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	SILA	19	19.463	0.614	12.5	0.6650	0.0000	SURCHARGED
30 minute summer	S1	18	18.355	0.115	20.6	0.1303	0.0000	OK
30 minute summer	S1LB	18	18.739	0.254	5.9	0.0720	0.0000	SURCHARGED
30 minute summer	S2	18	18.265	0.124	23.6	0.1399	0.0000	ОК
30 minute summer	S2L	18	18.730	0.101	3.1	0.0287	0.0000	OK
30 minute summer	S3	18	18.121	0.169	42.4	0.1912	0.0000	ОК
30 minute summer	S3LA	18	18.808	0.080	2.5	0.0228	0.0000	ОК
30 minute summer	S3LB	18	19.215	0.686	10.9	0.1941	0.0000	SURCHARGED
30 minute summer	S3LC	17	18.767	0.058	1.6	0.0164	0.0000	ОК
30 minute summer	S4	18	18.078	0.176	44.8	0.1990	0.0000	ОК
30 minute summer	S4L	18	18.689	0.080	2.5	0.0228	0.0000	ОК
30 minute summer	S5	18	18.026	0.188	54.2	0.2125	0.0000	ОК
30 minute summer	S5LA	18	18.613	0.149	4.1	0.0422	0.0000	ОК
30 minute summer	S5LB	18	18.398	0.110	3.3	0.0311	0.0000	ОК
30 minute summer	S6	18	17.922	0.111	63.7	0.1256	0.0000	ОК
30 minute summer	S6L	18	18.205	0.088	2.7	0.0248	0.0000	ОК
30 minute summer	S7	17	17.317	0.096	15.3	0.1081	0.0000	ОК
30 minute summer	S7L	20	18.847	0.591	16.2	1.8054	0.0000	SURCHARGED
30 minute summer	S8	18	17.179	0.134	26.2	0.1521	0.0000	ОК
30 minute summer	S8LA	18	17.623	0.110	3.3	0.0311	0.0000	ОК
30 minute summer	S8LB	18	17.669	0.095	2.9	0.0270	0.0000	ОК
30 minute summer	S9	18	17.109	0.154	32.8	0.1738	0.0000	ОК
30 minute summer	S9LA	18	17.450	0.101	3.1	0.0287	0.0000	ОК
30 minute summer	S9LB	18	17.624	0.139	3.9	0.0393	0.0000	ОК
30 minute summer	S10	18	16.958	0.176	45.9	0.1992	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S1LA	Orifice	S1	8.9				
30 minute summer	S1	1.001	S2	20.7	0.967	0.519	0.3590	
30 minute summer	S1LB	Orifice	S1	5.5				
30 minute summer	S2	1.002	S3	23.7	1.059	0.595	0.4333	
30 minute summer	S2L	Orifice	S2	3.0				
30 minute summer	S3	1.003	S4	42.4	1.011	0.600	0.5140	
30 minute summer	S3LA	Orifice	S3	2.4				
30 minute summer	S3LB	Orifice	S3	9.5				
30 minute summer	S3LC	Orifice	S3	1.5				
30 minute summer	S4	1.004	S5	44.7	1.001	0.635	0.7051	
30 minute summer	S4L	Orifice	S4	2.4				
30 minute summer	S5	1.005	S6	54.0	1.542	0.765	0.2322	
30 minute summer	S5LA	Orifice	S5	3.9				
30 minute summer	S5LB	Orifice	S5	3.2				
30 minute summer	S6	1.006	S12	63.5	2.683	0.296	0.7124	
30 minute summer	S6L	Orifice	S6	2.6				
30 minute summer	S7	11.001	S8	15.2	0.773	0.382	0.6081	
30 minute summer	S7L	Orifice	S7	8.7				
30 minute summer	S8	11.002	S9	26.1	0.973	0.656	0.4101	
30 minute summer	S8LA	Orifice	S8	3.2				
30 minute summer	S8LB	Orifice	S8	2.8				
30 minute summer	S9	11.003	S10	32.9	1.146	0.830	0.4813	
30 minute summer	S9LA	Orifice	S9	3.0				
30 minute summer	S9LB	Orifice	S9	3.7				
30 minute summer	S10	11.004	S11	46.0	1.059	0.644	0.3127	

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 16
rrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
alsh	Leicester	DM	Lincolnshire PE10 9SQ
	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 99.79%

fa Wa

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S10LA	18	17.365	0.139	3.9	0.0393	0.0000	ОК
30 minute summer	S10LB	18	17.543	0.160	4.3	0.0453	0.0000	SURCHARGED
30 minute summer	S11	18	16.931	0.179	50.0	0.2025	0.0000	ОК
30 minute summer	S11L	18	17.215	0.119	3.5	0.0337	0.0000	ОК
30 minute summer	S12	18	16.721	0.171	118.2	0.3028	0.0000	ОК
30 minute summer	S13	17	17.105	0.043	5.7	0.0491	0.0000	ОК
30 minute summer	S14	18	16.643	0.087	13.7	0.0981	0.0000	ОК
30 minute summer	S14L	18	17.217	0.217	5.3	0.0614	0.0000	SURCHARGED
30 minute summer	S15	18	16.449	0.183	137.7	0.3228	0.0000	ОК
30 minute summer	S16	18	16.130	0.093	14.4	0.1052	0.0000	ОК
30 minute summer	S16LA	22	16.671	0.411	23.4	5.3558	0.0000	SURCHARGED
30 minute summer	S16LB	18	16.601	0.294	6.4	0.0833	0.0000	SURCHARGED
30 minute summer	S17	19	16.085	0.320	155.1	0.5652	0.0000	ОК
1440 minute winter	S18	1590	16.083	0.349	11.5	0.6173	0.0000	ОК
1440 minute winter	HW1	1680	16.083	0.365	11.4	0.4132	0.0000	ОК
1440 minute winter	HW2	1620	16.083	0.365	5.7	0.4132	0.0000	SURCHARGED
1440 minute winter	S19	1620	16.083	0.403	0.1	0.4562	0.0000	SURCHARGED
30 minute summer	HW3	1	16.400	0.800	0.0	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S10LA	Orifice	S10	3.7				
30 minute summer	S10LB	Orifice	S10	4.1				
30 minute summer	S11	11.005	S12	50.0	1.163	0.708	0.5476	
30 minute summer	S11L	Orifice	S11	3.4				
30 minute summer	S12	1.007	S15	118.1	2.042	0.318	1.2435	
30 minute summer	S13	19.000	S14	5.6	0.595	0.082	0.2841	
30 minute summer	S14	19.001	S15	13.6	0.966	0.321	0.1368	
30 minute summer	S14L	Orifice	S14	5.0				
30 minute summer	S15	1.008	S17	137.1	1.507	0.357	3.2220	
30 minute summer	S16	21.001	S17	14.3	0.923	0.360	0.1254	
30 minute summer	S16LA	Orifice	S16	7.2				
30 minute summer	S16LB	Orifice	S16	6.0				
30 minute summer	S17	1.009	S18	153.0	1.298	0.971	1.5321	
1440 minute winter	S18	1.010	HW1	11.4	0.347	0.071	0.8706	
1440 minute winter	HW1	Flow through pond	HW2	5.7	0.005	0.002	377.0808	
1440 minute winter	HW2	1.011	S19	0.1	0.122	0.002	0.2561	
1440 minute winter	S19	1.012	HW3	0.0	0.000	0.000	0.5416	0.0

•	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 17
tarrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
vvaisii	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S1LA	22	19.587	0.738	32.6	7.4026	0.0000	SURCHARGED
30 minute summer	S1	18	18.408	0.168	35.5	0.1898	0.0000	ОК
30 minute summer	S1LB	20	19.098	0.613	15.3	1.4750	0.0000	SURCHARGED
30 minute summer	S2	18	18.345	0.204	42.1	0.2308	0.0000	ОК
30 minute summer	S2L	18	19.060	0.431	8.2	0.1220	0.0000	SURCHARGED
30 minute summer	S3	18	18.248	0.296	77.4	0.3350	0.0000	ОК
30 minute summer	S3LA	18	19.034	0.306	6.6	0.0866	0.0000	SURCHARGED
30 minute summer	S3LB	21	19.623	1.094	28.5	4.4877	0.0000	FLOOD RISK
30 minute summer	S3LC	18	18.855	0.146	4.1	0.0414	0.0000	ОК
30 minute summer	S4	18	18.195	0.293	83.0	0.3318	0.0000	ОК
30 minute summer	S4L	18	18.915	0.306	6.6	0.0866	0.0000	SURCHARGED
30 minute summer	S5	18	18.115	0.277	105.9	0.3127	0.0000	ОК
30 minute summer	S5LA	18	19.129	0.665	10.7	0.1881	0.0000	SURCHARGED
30 minute summer	S5LB	18	18.764	0.476	8.7	0.1346	0.0000	SURCHARGED
30 minute summer	S6	18	17.980	0.169	149.0	0.1909	0.0000	OK
30 minute summer	S6L	18	18.462	0.345	7.1	0.0976	0.0000	SURCHARGED
30 minute summer	S7	18	17.644	0.423	27.1	0.4785	0.0000	SURCHARGED
30 minute summer	S7L	23	18.982	0.726	42.3	11.6845	0.0000	SURCHARGED
30 minute summer	S8	18	17.570	0.525	51.7	0.5932	0.0000	SURCHARGED
30 minute summer	S8LA	19	17.960	0.447	8.7	0.1907	0.0000	SURCHARGED
30 minute summer	S8LB	18	17.960	0.386	7.6	0.1093	0.0000	SURCHARGED
30 minute summer	S9	18	17.417	0.462	66.5	0.5220	0.0000	SURCHARGED
30 minute summer	S9LA	18	17.784	0.435	8.2	0.1231	0.0000	SURCHARGED
30 minute summer	S9LB	18	18.099	0.614	10.2	0.1738	0.0000	SURCHARGED
30 minute summer	S10	18	17.134	0.352	97.6	0.3980	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S1LA	Orifice	S1	9.8				
30 minute summer	S1	1.001	S2	35.1	1.055	0.883	0.5839	
30 minute summer	S1LB	Orifice	S1	8.9				
30 minute summer	S2	1.002	S3	41.6	1.153	1.047	0.7511	
30 minute summer	S2L	Orifice	S2	7.4				
30 minute summer	S3	1.003	S4	76.9	1.112	1.088	0.8598	
30 minute summer	S3LA	Orifice	S3	6.1				
30 minute summer	S3LB	Orifice	S3	12.1				
30 minute summer	S3LC	Orifice	S3	3.9				
30 minute summer	S4	1.004	S5	82.6	1.204	1.173	1.0877	
30 minute summer	S4L	Orifice	S4	6.1				
30 minute summer	S5	1.005	S6	124.2	2.216	1.758	0.3598	
30 minute summer	S5LA	Orifice	S5	9.3				
30 minute summer	S5LB	Orifice	S5	7.8				
30 minute summer	S6	1.006	S12	130.9	3.223	0.611	1.2218	
30 minute summer	S6L	Orifice	S6	6.5				
30 minute summer	S7	11.001	S8	24.9	0.828	0.627	1.1876	
30 minute summer	S7L	Orifice	S7	9.7				
30 minute summer	S8	11.002	S9	50.5	1.270	1.270	0.6081	
30 minute summer	S8LA	Orifice	S8	7.4				
30 minute summer	S8LB	Orifice	S8	6.9				
30 minute summer	S9	11.003	S10	66.7	1.677	1.683	0.6666	
30 minute summer	S9LA	Orifice	S9	7.1				
30 minute summer	S9LB	Orifice	S9	8.9				
30 minute summer	S10	11.004	S11	97.2	1.381	1.362	0.5071	

•	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 18
tarrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
vulsti	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S10LA	18	17.840	0.614	10.2	0.1738	0.0000	SURCHARGED
30 minute summer	S10LB	18	18.099	0.716	11.2	0.2026	0.0000	SURCHARGED
30 minute summer	S11	18	17.076	0.324	107.3	0.3665	0.0000	SURCHARGED
30 minute summer	S11L	18	17.618	0.522	9.2	0.1477	0.0000	SURCHARGED
30 minute summer	S12	18	16.820	0.270	249.8	0.4769	0.0000	ОК
30 minute summer	S13	17	17.132	0.070	14.8	0.0796	0.0000	ОК
30 minute summer	S14	17	16.700	0.144	32.3	0.1627	0.0000	ОК
30 minute summer	S14L	19	17.645	0.645	13.8	0.9255	0.0000	SURCHARGED
30 minute summer	S15	18	16.570	0.304	296.8	0.5380	0.0000	ОК
1440 minute winter	S16	1440	16.434	0.397	3.9	0.4493	0.0000	SURCHARGED
30 minute winter	S16LA	29	16.814	0.554	47.2	22.8499	0.0000	SURCHARGED
30 minute summer	S16LB	20	16.995	0.688	16.8	1.7616	0.0000	SURCHARGED
1440 minute winter	S17	1440	16.434	0.669	23.7	1.1825	0.0000	SURCHARGED
1440 minute winter	S18	1440	16.434	0.700	23.4	1.2373	0.0000	SURCHARGED
1440 minute winter	HW1	1440	16.434	0.716	23.3	0.8101	0.0000	ОК
1440 minute winter	HW2	1440	16.434	0.716	11.7	0.8101	0.0000	FLOOD RISK
1440 minute winter	S19	1440	16.434	0.754	0.6	0.8530	0.0000	FLOOD RISK
30 minute summer	HW3	1	16.400	0.800	0.0	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S10LA	Orifice	S10	8.9				
30 minute summer	S10LB	Orifice	S10	9.7				
30 minute summer	S11	11.005	S12	106.9	1.539	1.512	0.8505	
30 minute summer	S11L	Orifice	S11	8.2				
30 minute summer	S12	1.007	S15	249.6	2.390	0.671	2.2923	
30 minute summer	S13	19.000	S14	14.6	0.786	0.214	0.5501	
30 minute summer	S14	19.001	S15	31.8	1.192	0.748	0.2593	
30 minute summer	S14L	Orifice	S14	9.2				
30 minute summer	S15	1.008	S17	294.4	1.979	0.767	4.8561	
1440 minute winter	S16	21.001	S17	3.9	0.625	0.098	0.3179	
30 minute winter	S16LA	Orifice	S16	8.4				
30 minute summer	S16LB	Orifice	S16	9.5				
1440 minute winter	S17	1.009	S18	23.4	0.437	0.149	2.0406	
1440 minute winter	S18	1.010	HW1	23.3	0.394	0.146	1.0223	
1440 minute winter	HW1	Flow through pond	HW2	11.7	0.007	0.005	803.1384	
1440 minute winter	HW2	1.011	S19	0.6	0.139	0.015	0.2561	
1440 minute winter	S19	1.012	HW3	0.6	0.015	0.015	0.5416	11.3

•	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur	Page 19
tarrow	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
valsti	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S1LA	25	19.719	0.870	67.2	22.9695	0.0000	FLOOD RISK
30 minute summer	S1	18	19.102	0.862	50.4	0.9748	0.0000	SURCHARGED
30 minute summer	S1LB	22	19.255	0.770	31.5	8.3934	0.0000	FLOOD RISK
30 minute summer	S2	18	18.973	0.832	58.4	0.9415	0.0000	SURCHARGED
30 minute summer	S2L	20	19.633	1.004	16.8	1.2958	0.0000	FLOOD RISK
30 minute summer	S3	18	18.766	0.814	115.8	0.9205	0.0000	SURCHARGED
30 minute summer	S3LA	19	19.533	0.805	13.7	0.5914	0.0000	FLOOD RISK
30 minute summer	S3LB	23	19.761	1.232	58.8	16.7304	0.0000	FLOOD RISK
30 minute summer	S3LC	18	19.160	0.451	8.4	0.1275	0.0000	SURCHARGED
30 minute summer	S4	18	18.643	0.741	121.8	0.8385	0.0000	SURCHARGED
30 minute summer	S4L	19	19.380	0.771	13.7	0.6565	0.0000	FLOOD RISK
30 minute summer	S5	18	18.459	0.621	150.7	0.7018	0.0000	SURCHARGED
30 minute summer	S5LA	20	19.331	0.867	22.1	2.9650	0.0000	FLOOD RISK
30 minute summer	S5LB	20	19.105	0.817	17.9	1.8263	0.0000	FLOOD RISK
30 minute summer	S6	18	18.334	0.523	195.1	0.5915	0.0000	SURCHARGED
30 minute summer	S6L	20	18.911	0.794	14.7	1.0209	0.0000	FLOOD RISK
30 minute summer	S7	18	18.516	1.295	45.8	1.4641	0.0000	SURCHARGED
30 minute winter	S7L	29	19.160	0.903	67.3	33.7158	0.0000	FLOOD RISK
30 minute summer	S8	18	18.302	1.257	72.2	1.4220	0.0000	SURCHARGED
30 minute summer	S8LA	21	18.309	0.796	22.0	5.3772	0.0000	FLOOD RISK
30 minute summer	S8LB	21	18.407	0.833	15.8	3.0301	0.0000	FLOOD RISK
30 minute summer	S9	18	18.041	1.086	82.6	1.2277	0.0000	SURCHARGED
30 minute summer	S9LA	21	18.268	0.919	16.8	2.7203	0.0000	FLOOD RISK
30 minute summer	S9LB	21	18.408	0.923	21.0	3.4748	0.0000	FLOOD RISK
30 minute summer	S10	18	17.652	0.870	122.7	0.9836	0.0000	SURCHARGED

US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
S1LA	Orifice	S1	10.7				
S1	1.001	S2	48.0	1.208	1.207	0.6670	
S1LB	Orifice	S1	10.1				
S2	1.002	S3	55.9	1.406	1.407	0.7712	
S2L	Orifice	S2	11.5				
S3	1.003	S4	112.0	1.590	1.585	0.8632	
S3LA	Orifice	S3	10.3				
S3LB	Orifice	S3	12.8				
S3LC	Orifice	S3	7.4				
S4	1.004	S5	120.1	1.706	1.705	1.1111	
S4L	Orifice	S4	10.1				
S5	1.005	S6	152.6	2.183	2.160	0.4662	
S5LA	Orifice	S5	10.7				
S5LB	Orifice	S5	10.4				
S6	1.006	S12	194.2	3.342	0.906	2.1178	
S6L	Orifice	S6	10.2				
S7	11.001	S8	43.1	1.083	1.082	1.1876	
S7L	Orifice	S7	10.9				
S8	11.002	S9	67.0	1.684	1.685	0.6081	
S8LA	Orifice	S8	9.9				
S8LB	Orifice	S8	10.1				
S9	11.003	S10	80.5	2.024	2.031	0.6666	
S9LA	Orifice	S9	10.4				
S9LB	Orifice	S9	10.9				
S10	11.004	S11	122.0	1.733	1.708	0.5071	
	US Node S1LA S1 S1LB S2 S2L S3 S3LA S3LB S3LC S4 S4L S5 S5LA S5LB S6 S6L S7 S7L S8 S6L S7 S7L S8 S8LA S8LB S9 S9LA S9LB S9LB S10	US Link Node S1LA Orifice S1LA Orifice S1LB Orifice S2 1.001 S1LB Orifice S2 1.002 S2L Orifice S3 1.003 S3LA Orifice S3LB Orifice S3LA Orifice S3LA Orifice S3LA Orifice S3LA Orifice S3LA Orifice S4 1.004 S4L Orifice S5LA Orifice S5LA Orifice S6 1.006 S6L Orifice S7L Orifice S8 11.001 S7L Orifice S8LA Orifice S9LA Orifice S9LA Orifice S9LA Orifice S9LA Orifice S9LA Orifice S	US Link DS Node Node S1LA Orifice S1 S1 1.001 S2 S1LB Orifice S1 S2 1.002 S3 S2L Orifice S2 S3 1.003 S4 S3LA Orifice S3 S4 1.004 S5 S4L Orifice S5 S4L Orifice S5 S5LA Orifice S5 S5LB Orifice S5 S6L Orifice S6 S7L Orifice S7 S8 11.001 S8 S7L Orifice S8 S8LA Orifice S8 S9 11.003 S10 S9LA	US Link DS Outflow Node Node (l/s) S1LA Orifice S1 10.7 S1 1.001 S2 48.0 S1LB Orifice S1 10.1 S2 1.002 S3 55.9 S2L Orifice S2 11.5 S3 1.003 S4 112.0 S3LA Orifice S3 10.3 S3LB Orifice S3 12.8 S3LC Orifice S3 12.8 S3LC Orifice S3 7.4 S4 1.004 S5 120.1 S4L Orifice S4 10.1 S5 1.005 S6 152.6 S5LA Orifice S5 10.7 S5LB Orifice S5 10.7 S5LB Orifice S5 10.7 S6L Orifice S5 10.7 S7L	USLinkDSOutflowVelocityNodeNode(l/s)(m/s)S1LAOrificeS110.7S11.001S248.01.208S1LBOrificeS110.11S21.002S355.91.406S2LOrificeS211.51S31.003S4112.01.590S3LAOrificeS310.31S3LBOrificeS312.81S3LCOrificeS37.41S41.004S5120.11.706S4LOrificeS410.11S51.005S6152.62.183S5LAOrificeS510.71S6LOrificeS510.41S6LOrificeS510.41S6LOrificeS510.41S6LOrificeS510.41S711.001S843.11.083S7LOrificeS710.9S811.002S967.01.684S8LAOrificeS89.91S911.003S1080.52.024S9LAOrificeS910.4S9LBOrificeS910.4S9LBOrificeS910.9S1011.004S11122.01.733	USLinkDSOutflowVelocityFlow/CapNodeNode(l/s)(m/s)S1LAOrificeS110.7S11.001S248.01.2081.207S1LBOrificeS110.1.S21.002S355.91.4061.407S2LOrificeS211.5S31.003S4112.01.5901.585S3LAOrificeS310.3S3LBOrificeS312.8S3LCOrificeS37.4S41.004S5120.11.7061.705S4LOrificeS410.1S51.005S6152.62.1832.160S5LAOrificeS510.7S5LBOrificeS510.4S61.006S12194.23.3420.906S6LOrificeS610.2S711.001S843.11.0831.082S7LOrificeS710.9S8LBOrificeS89.9S8LBOrificeS810.1S9LAOrificeS910.4S9LBOrificeS910.4S9LAOrificeS910.9. <t< td=""><td>US Link DS Outflow Velocity Flow/Cap Link Node (l/s) (m/s) Vol (m³) S1LA Orifice S1 10.7 S1 1.001 S2 48.0 1.208 1.207 0.6670 S1LB Orifice S1 10.1 </td></t<>	US Link DS Outflow Velocity Flow/Cap Link Node (l/s) (m/s) Vol (m³) S1LA Orifice S1 10.7 S1 1.001 S2 48.0 1.208 1.207 0.6670 S1LB Orifice S1 10.1

	Farrow Walsh Consulting Ltd	File: FW2053 Drainage Strategy Sur(Page 20
tarrow I	62 Highcross Street	Network: Storm Strategy	Cedar Drive, Bourne
walsh	Leicester	DM	Lincolnshire PE10 9SQ
valst	LE1 4NN	December 2021	Drainage Strategy Surcharged Outfa

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S10LA	21	18.056	0.830	21.0	3.3590	0.0000	FLOOD RISK
30 minute summer	S10LB	21	18.323	0.940	23.1	3.3889	0.0000	FLOOD RISK
30 minute summer	S11	18	17.562	0.810	133.5	0.9162	0.0000	SURCHARGED
30 minute summer	S11L	20	17.976	0.880	18.9	2.6808	0.0000	FLOOD RISK
30 minute summer	S12	18	17.375	0.825	350.6	1.4571	0.0000	SURCHARGED
30 minute summer	S13	18	17.313	0.251	30.5	0.2834	0.0000	SURCHARGED
30 minute summer	S14	18	17.219	0.663	54.2	0.7499	0.0000	SURCHARGED
30 minute summer	S14L	21	17.795	0.795	28.4	5.8283	0.0000	FLOOD RISK
30 minute summer	S15	18	17.120	0.854	432.2	1.5085	0.0000	SURCHARGED
1440 minute winter	S16	990	16.721	0.684	7.1	0.7735	0.0000	SURCHARGED
30 minute winter	S16LA	31	17.005	0.745	97.3	58.6490	0.0000	FLOOD RISK
30 minute summer	S16LB	22	17.330	1.023	34.7	8.0159	0.0000	FLOOD RISK
1440 minute winter	S17	990	16.721	0.956	44.4	1.6887	0.0000	SURCHARGED
1440 minute winter	S18	990	16.720	0.986	44.2	1.7427	0.0000	SURCHARGED
1440 minute winter	HW1	990	16.720	1.002	44.1	1.1333	0.0000	ОК
1440 minute winter	HW2	990	16.720	1.002	37.0	1.1333	141.6538	FLOOD
960 minute winter	S19	750	16.719	1.039	4.6	1.1756	0.0000	FLOOD RISK
30 minute summer	HW3	1	16.400	0.800	0.0	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S10LA	Orifice	S10	10.4				
30 minute summer	S10LB	Orifice	S10	11.2				
30 minute summer	S11	11.005	S12	134.1	1.904	1.896	0.8959	
30 minute summer	S11L	Orifice	S11	10.7				
30 minute summer	S12	1.007	S15	349.5	2.440	0.940	3.4042	
30 minute summer	S13	19.000	S14	28.0	0.911	0.409	1.1703	
30 minute summer	S14	19.001	S15	51.0	1.282	1.200	0.3855	
30 minute summer	S14L	Orifice	S14	10.2				
30 minute summer	S15	1.008	S17	431.7	2.725	1.125	5.6453	
1440 minute winter	S16	21.001	S17	7.4	0.663	0.186	0.3179	
30 minute winter	S16LA	Orifice	S16	9.9				
30 minute summer	S16LB	Orifice	S16	11.6				
1440 minute winter	S17	1.009	S18	44.2	0.529	0.280	2.0406	
1440 minute winter	S18	1.010	HW1	44.1	0.512	0.276	1.0223	
1440 minute winter	HW1	Flow through pond	HW2	37.0	0.008	0.015	1183.6033	
1440 minute winter	HW2	1.011	S19	4.6	0.117	0.116	0.2561	
960 minute winter	S19	1.012	HW3	4.6	0.115	0.116	0.5416	180.1

Farrow Walsh Consulting Ltd Cedar Drive, Bourne, Lincolnshire Flood Risk Assessment December 2021 FW2038_FRA_001 v2

APPENDIX N – DRAINAGE MAINTENANCE SCHEDULE

Drainage Maintenance Schedule - FW2038 Bourne, Lincolnshire

Schedule	Feature	Location	Inspection Type	Inspection Frequency	Required Action	Maintenance Works	Maintenance Intervals	Comments
	Permeable Paving	Parking bays and access road	Visual	3 Months	Removal of litter and debris	Litter removal	Monthly (or as required).	Maintenace interval subject to condition of porous paving
Regular	Permeable Paving	Parking bays and access road	Visual	3 Times per year (see comments)	Sweeping and jet wash to remove silt and sediment build up from permable paving surface	Silt removal	3 Times per year (see comments)	Inspection/Maintenance should be as follows: - End of winter (April) - Mid Summer (July/Aug) to remove dust, flower/grass deposits - After Autumn leaf fall (November)
Maintenance	Flow Control Chamber	At Attenuation Pond Outfall chamber	Visual	3 Months	Removal of litter and debris	Silt / Debris removal	6 Months (or as required)	Maintenance interval subject to Visual Inspection findings
	Orifice Plate Manhole	Demarcation chambers to permable paved driveways	Visual	3 Months	Inspection of outlet and cover grate, remove debris and litter and ensure outlet is clear	Silt / Debris removal	6 Months (or as required)	Maintenance interval subject to Visual Inspection findings
	Foul & Surface Water Chambers	Entire site	Visual	6 Months	Remove silt and leaf build up from gullies, chambers, gutters etc.	Silt / Debris removal	As required (debris max. 60% of capacity)	Maintenance interval subject to Visual Inspection findings
	Road & Yard Gullies	Entire site	Visual	6 Months	Mechanical silt removal from sump	Silt / Debris removal	As required (debris max. 60% of capacity)	Maintenance interval subject to Visual Inspection findings
Occasional Maintenance	Flow Control Chamber	At Attenuation Pond Outfall chamber	Visual	6 Months	Mechanical silt removal from sump	Silt / Debris removal	As required (debris max. 60% of capacity)	Maintenance interval subject to Visual Inspection findings
	Orifice Plate Manhole	Demarcation chambers to permable paved driveways	Visual	6 Months	Mechanical silt removal from sump	Silt / Debris removal	As required (debris max. 60% of capacity)	Maintenance interval subject to Visual Inspection findings
	Permeable Paving	Parking bays and access road	Visual	6 Months	Manual removal of weeds	Weed removal *	6 Months (or as required)	Maintenance interval subject to Visual Inspection findings

Schedule	Feature	Location	Inspection Type	Inspection Frequency	Required Action	Maintenance Works	Maintenance Intervals	Comments
	Perforated Carrier Drains	Parking bays and access road	Visual	6 Months	CCTV / Jetting	Silt / Debris removal	As required (debris max. 60% of capacity)	Maintenance interval subject to Visual Inspection findings
Occasional Maintenance	Atteunation Pond	North-east of site	Visual	6 Months	Removal from debris	Silt / Debris removal	6 Months (or as required)	Maintenance interval subject to Visual Inspection findings
	Catchpit Chambers	Entire Site	Visual	6 Months	Mechanical silt removal from sump	Silt / Debris removal	As required (debris max. 60% of capacity)	Maintenance interval subject to Visual Inspection findings
Remedial Actions	Foul & Surface Water Drainage	Entire site	Visual	12 Months	Remove and dispose of oils or fuel (diesel & petrol) residues using safe standard practices.	Safe removal or contaminant residues	As required.	As required.
	Attenuation Pond	North-east of site	Visual	6 Months	Removal from debris	Silt / Debris removal	As required.	Maintenance interval subject to Visual Inspection findings
	Permeable Paving	Parking bays and access road	Visual	12 Months	Infiltration surface rehabilitation	Replace broken or cracked pavious **	As required or following poor performance.	Maintenance interval subject to Visual Inspection findings
	Permeable Paving	Parking bays and access road	Visual	12 Months	Infiltration surface rehabilitation	Relay any areas of settlement	As required or following poor performance.	Maintenance interval subject to Visual Inspection findings
	Foul & Surface Water Drainage	Entire site	Visual	12 Months	Walk over inspection for condition (breaks, lifting & missing) of chamber covers and grates.	Replace broken or cracked inspection chamber covers	As required.	Maintenance interval subject to Visual Inspection findings
Monitoring	Permeable Paving	Parking bays and access road	Visual	Monthly for first 3 Months	Initial inspection to ensure performance	Top up grit between paviours	As required.	Maintenance interval subject to Visual Inspection findings
Monitoring -	Attenuation Pond	North-east of site	Visual	12 Months	Survey inside of pond for sediment build-up and remove if necessary	Remove sediment as required	5 Years or as required.	Maintenance interval subject to Visual Inspection findings
	Permeable Paving	Parking bays and access road	Visual	Monthly for first 3 Months	Initial inspection to ensure performance	Top up grit between paviours	As required.	Maintenance interval subject to Visual Inspection findings

* If weeds are persitent, weed killer may be used to reduce the requirement for manual weed removal.

** Any block which is to be replaced should be bedded on anew layer of grit / sand.

*** If re-construction is necessary, the following procedure should be followed: 1. Lift surface layer and laying course, 2. Remove and geotextile filter layer, 3. inspect sub-base and wash/replace if required, 4. Renew any geotextile layer as required, 5. Renew laying course, jointing material and block paviours. Note: this is deemed unlikely to occur and thus unlikely to be implemented

Maintenance procedures to be undertaken in accordance with Ciria 753. This schedule should be read in conjunction with all engineering drawings